

US009186361B2

US 9,186,361 B2

Nov. 17, 2015

(12) United States Patent

Chatterjee et al.

(56) References Cited

(10) **Patent No.:**

(45) **Date of Patent:**

U.S. PATENT DOCUMENTS

4,038,396 A 7/1977 Shen et al. 4,582,837 A 4/1986 Hauel et al. 5,077,408 A 12/1991 Guillaumet et al. 7/1995 5,434,150 A Austel et al. 7,618,964 B2* 11/2009 Honold et al. 514/234.2 7,786,113 B2 8/2010 Honold et al. 514/234.2 2005/0101647 A1 5/2005 Oda et al. 2005/0214901 A1 9/2005 Ealick et al 2005/0282853 A1 12/2005 Boykin et al. 514/303 2007/0148185 A1 6/2007 Rathore et al. 2009/0163545 A1 6/2009 Goldfarb 2010/0168084 A1 7/2010 Huber et al. 2011/0053915 A1 3/2011 Ivaschenko et al. 2011/0182812 A1 7/2011 Szardenings et al. 2014/0275013 A1 2014/0275119 A1 9/2014 Chatterjee et al. 9/2014 Liang et al.

FOREIGN PATENT DOCUMENTS

CA	2011222 A1	9/1990
DE	4129603 A1	3/1993
DE	4304650 A1	8/1994
EP	700906 A1	3/1996
EP	1460067 A1	9/2004
LI	1400007 A1	3/200 4

(Continued)

OTHER PUBLICATIONS

Al-Salabi, et al., "Purine Nucleobase Transport in Amastigotes of Leishmania mexicana: Involvement in Allopurinol Uptake", Antimicrobial Agents and Chemotherapy, Sep., 2005, vol. 49, No. 9, pp. 3682-3689, American Society for Microbiology, US.

(Continued)

Primary Examiner — Patrick Lewis (74) Attorney, Agent, or Firm — Chihang Amy Smith; Genomics Institute of the Novartis Research Foundation

(57) ABSTRACT

The present invention provides compounds of Formula I:

$\begin{array}{c|c} R_1 \\ L_1 - NH \\ \hline \\ R_3 \end{array}$

Ι

or a pharmaceutically acceptable salt, tautomer, or stereoisomer, thereof, wherein the variables are as defined herein. The present invention further provides pharmaceutical compositions comprising such compounds and methods of using such compounds for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a disease caused by a parasite, such as Leishmaniasis, Human African Trypanosomiasis and Chagas disease.

(54) COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF PARASITIC DISEASES

(71) Applicants: Arnab Kumar Chatterjee, San Diego, CA (US); Fang Liang, Encinitas, CA (US); Casey Jacob Nelson Mathison, San Diego, CA (US); Pranab Kumar Mishra, West Bengal (IN); Valentina Molteni, San Diego, CA (US); Advait Suresh Nagle, San Diego, CA (US); Frantisek Supek, San Diego, CA (US); Liying Jocelyn Tan, Singapore (SG); Agnes Vidal, Spring Valley, CA (US)

(72) Inventors: Arnab Kumar Chatterjee, San Diego, CA (US); Fang Liang, Encinitas, CA (US); Casey Jacob Nelson Mathison, San Diego, CA (US); Pranab Kumar Mishra, West Bengal (IN); Valentina Molteni, San Diego, CA (US); Advait Suresh Nagle, San Diego, CA (US); Frantisek Supek, San Diego, CA (US); Liying Jocelyn Tan, Singapore (SG); Agnes Vidal, Spring Valley, CA (US)

(73) Assignee: Novartis AG, Basel (CH)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/209,655

(22) Filed: Mar. 13, 2014

(65) **Prior Publication Data**

US 2014/0274926 A1 Sep. 18, 2014

Related U.S. Application Data

(60) Provisional application No. 61/790,028, filed on Mar. 15, 2013.

(51) Int. Cl.

A01N 43/42 (2006.01)

A61K 31/44 (2006.01)

A61K 31/5377 (2006.01)

A61K 31/437 (2006.01)

A61K 45/06 (2006.01)

C07D 471/04 (2006.01)

C07D 498/04 (2006.01)

(58) Field of Classification Search

None

See application file for complete search history.

17 Claims, No Drawings

(56)	References Cited				
	FOREIGN PATENT DOCUMENTS				
WO	9806703 A1	2/1998			
WO	9810779 A1	3/1998			
WO	0170743 A1	9/2001			
WO	0196336 A2	12/2001			
WO	0236580 A2	5/2002			
WO	0238153 A1	5/2002			
WO	0244126 A2	6/2002			
WO	02075318 A2	9/2002			
WO	03011219 A2	2/2003			
WO	03042185 A1	5/2003			
WO	03045929 A1	6/2003			
WO	2004024897 A2	3/2004			
WO	2005013950 A2	2/2005			
WO	2005014598 A1	2/2005			
WO	2005023761 A2	3/2005			
WO	2005030206 A1	4/2005			
WO	2006066913 A2	6/2006			
WO	2006066914 A2	6/2006			
WO	2006101456 A1	9/2006			
WO	2007014707 A1	2/2007			
WO	2007017143 A1	2/2007			
WO	2007019417 A1	2/2007			
WO WO	2007028135 A2	3/2007 1/2008			
WO	2008007900 A1				
WO	2008021388 A1 2008048991 A2	2/2008 4/2008			
WO	2008048991 A2 2008100376 A2	8/2008			
WO	2008100370 A2 2008118122 A2	10/2008			
WO	2008118122 A2 2008128968 A1	10/2008			
WO	2009128968 A1 2009005551 A2	1/2009			
WO	2009005531 A2 2009005675 A1	1/2009			
WO	2009006389 A2	1/2009			
WO	2009051454 A2	4/2009			
WO	2009077956 A2	6/2009			
WO	2009112445 A1	9/2009			
WO	2009151546 A2	12/2009			
WO	2010027746 A2	3/2010			
WO	2011027249 A2	3/2011			
WO	2011153377 A2	8/2011			
WO	2012088411 A1	6/2012			
WO	2012130633 A1	10/2012			
WO	2013009827 A1	1/2013			
WO	2013024282 A2	2/2013			
WO	2013078254 A1	5/2013			
WO	2013147711 A1	10/2013			
WO	2014003124 A1	1/2014			
WO	2014012511 A1	1/2014			
WO	2014028968 A1	2/2014			
WO	2014151630 A2	9/2014			
WO	2014151784 A1	9/2014			
	OTHER PUBLICATIONS				

Hwang, et al., "Optimization of Chloronitrobenzamides (CNBs) as Therapeutic Leads for Human African Trypanosomiasis (HAT)", Journal of Medicinal Chemistry, Mar. 13, 2013, vol. 56, pp. 2850-2860.

Lan, et al., "Molecular modeling studies on imidazol [4,5-b]pyridine derivatives as Aurora A kinase inhibitors using 3D-QSAR and docking approaches", European Journal of Medicinal Chemistry, 2011, vol. 46, pp. 77-94.

Middleton, et al., "Synthesis of Imidazo[4,5-b]- and [4,5-c]pyridines", J. Heterocyclic Chem., 1980, vol. 17, pp. 1757-1760. Savarino, et al., "Aminophenyl-X-azolopyridines as Precursors of Heterocyclic Azo Dyes", J. Heterocyclic Chem., 1989, vol. 26, pp. 289-292.

Verlinde, et al., "Selective Inhibition of Trypanosomal Glyceraldehyde-3-phosphate Dehydrogenase by Protein Structure-Based Design: Toward New Drugs for the Treatment of Sleeping Sickness", J. Med. Chem., 1994, vol. 37, pp. 3605-3613; American Chemical Society.

Ferrins, et al., "3-(Oxazolo[4,5-pyridin-2-yl)anlidies as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis", European Journal of Medicinal Chemistry, 2013, vol. 66, pp. 450-465, Elsevier Massson SAS.

Wu, et al., "Discovery and Mechanism Study of SIRT1 Activators that Promote the Deacetylation of Fluorophore-Labeled Substrate", Journal of Medicinal Chemistry, 2013, vol. 56, No. 3, pp. 761-780, American Chemical Society.

Bemis, et al., "Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as noval SIRT1 activators", Bioorganic & Medicinal Chemistry Letters, 2009, vol. 19, pp. 2350-2353, Elsevier Ltd.

Cheng, et al., "High-throughput identification of antibacterials against methiciliin-resistant *Staphylococcus aureas* (MRSA) and the transglycosylase", Bioorganic & Medicinal Chemistry, 2010, vol. 18, pp. 8512-8529, Elsevier Ltd.

Park, et al., "3D-QSAR of SIRT1 Activators Targeting Against Diet-Induced Metabolic Syndrome", Bull. Korean Chem. Soc., 2009, vol. 30, No. 9, pp. 2117-2120,.

Vu, et al., "Discovery of Imidazo[1,2-b]thiazole Derivatives as Novel SIRT1 Activators", Journal of Medicinal Chemistry, 2009, vol. 52, pp. 1275-1283, American Chemical Society.

Chakraborty, et al., "Studies on ornithine decarboxylase of Leishmania donovani: structure modeling and inhibitor docking", Medicinal Chemistry Research, 2013, vol. 22, pp. 466-478.

Tatipaka, et al., "Substituted 2-Phenyl-Imidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis", Journal of Medicinal Chemistry, Dec. 19, 2013, vol. 57, No. 3, pp. 828-835, American Chemical Society.

Novinson, et al., "Novel Heterocyclic Nitrofurfural Hydrazones. In Vivo Antitryanosomal Activity", Journal of Medicinal Chemistry, 1976, vol. 19, No. 4, pp. 512-516.

Database Registry Chemical Abstracts Service, Columbus, Ohio, US, Aug. 14, 2007, Database accession No. 944581-06-0.

Caballero, et al., "Triazolopyrimidine compounds containing firstrow transition metals and their activity against the neglected infectous Chagas disease and leishmaniasis", European Journal of Medicinal Chemistry, 2014, vol. 85, pp. 526-534, Elsevier Masson SAS.

Caballero, et al., "Lanthanide complexes containing 5-methyl-1,2,4-triazolo[1,5-a] pyrimidine-7(4H)-one and their therapeutic potential to fight leishmaniasis and Chagas disease", Journal of Inorganic Biochemistry, 2014, vol. 138, pp. 39-46, Elsevier Inc.

De Rycker, et al., "Comparison of a High-Throughput High-Content Intracellular Leishmania donovani Assay with an Axenic Amastrigote Assay", Antimicrobial Agents and Chemotherapy, 2013, vol. 57, No. 7, pp. 2913-2922.

^{*} cited by examiner

COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF PARASITIC DISEASES

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/790,028, filed 15 Mar., 2013. The full disclosure of said application is incorporated herein by reference in its entirety and for all purposes.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention provides a class of compounds, pharmaceu- 15 tical compositions comprising such compounds and methods of using such compounds to treat or prevent Leishmaniasis.

2. Background

Leishmaniasis is a disease caused by protozoan parasites that belong to the genus *Leishmania* and is transmitted by the 20 bite of certain species of sand fly.

Leishmaniasis is mostly a disease of the developing world, and is rarely known in the developed world outside a small number of cases, mostly in instances where troops are stationed away from their home countries. Leishmaniasis can be 25 transmitted in many tropical and subtropical countries, and is found in parts of about 88 countries. Approximately 350 million people live in these areas. The settings in which leishmaniasis is found range from rainforests in Central and South America to deserts in West Asia and the Middle East. It 30 affects as many as 12 million people worldwide, with 1.5-2 million new cases each year. The visceral form of leishmaniasis has an estimated incidence of 500,000 new cases and 60,000 deaths each year. More than 90 percent of the world's cases of visceral leishmaniasis are in India, Bangladesh, 35 Nepal, Sudan, and Brazil. Kabul is estimated as the largest center of cutaneous leishmaniasis in the world, with approximately 67,500 cases as of 2004.

There are four main forms of Leishmaniasis. Cutaneous leishmaniasis is the most common form of leishmaniasis. 40 Visceral leishmaniasis, also called kala-azar, is the most serious form in which the parasites migrate to the vital organs. Visceral leishmaniasis is caused by the parasite *Leishmania donovani*, and is potentially fatal if untreated.

Currently, no vaccines are in routine use.

The two main therapies for visceral leishmaniasis are the antimony derivatives sodium stibogluconate (Pentostam®) and meglumine antimoniate (Glucantim®). Sodium stibogluconate has been used for about 70 years and resistance to this drug is a growing problem. In addition, the treatment is rela- 50 tively long and painful, and can cause undesirable side effects. Amphotericin (AmBisome) is now the treatment of choice. Miltefosine (Impavido), and paromomycin are the other treatment alternatives. These drugs are known to produce a definitive cure in >90% of patients. Amphotericin 55 (AmBisome) is expansive and has to be given intravenously; it is not affordable to most patients affected. Paromomycin, although affordable, requires intramuscular injections for 3 weeks; compliance is a major issue. Miltefosine is an oral drug and has shown to be more effective and better tolerated 60 than other drugs. However, there are problems associated with the use of miltefosine that arise from its teratogenicity and pharmacokinetics. Miltefosine was shown to be much slower eliminated from the body and was still detectable five months after the end of treatment. The presence of subtherapeutic miltefosine concentrations in the blood beyond five months after treatment might contribute to the selection of

2

resistant parasites and, moreover, the measures for preventing the teratogenic risks of miltefosine must be reconsidered. This led to some reluctance to taking Miltefosine by affected populations.

The Drugs for Neglected Diseases Initiative is actively facilitating the search for novel therapeutics. Our invention meets that needs.

Human African trypanosomiasis (HAT), also known as African sleeping sickness, is a vector-borne parasitic disease caused by the protozoa *Trypanosoma brucei*. There are two subspecies that infect humans, *T.b. gambiense* and *T.b. rhodesiense*, with the former accounting for over 95% of reported cases and the latter accounting for the remaining reported cases. The parasites are transmitted to humans by tsetse fly (*Glossina* genus) bites which have acquired their infection from human beings or from animals harboring the human pathogenic parasites.

The disease has been recorded as occurring in 36 countries, all in subtropical and equatorial Africa. It is endemic in southeast Uganda and western Kenya. In 1995, the WHO estimated that 300,000 people were afflicted with the disease. In its 2001 report, the WHO set the figure of people at risk of infection at 60 million, of which only 4 to 5 million had access to any kind of medical monitoring. In 2006, the WHO estimated that about 70,000 people could have the disease, and many cases are believed to go unreported. About 48,000 people died of sleeping sickness in 2008. Public health efforts in prevention and the eradication of the tsetse fly population have proven to be successful in controlling the spread of the disease; under 10,000 new cases were reported in 2009 according to WHO figures, which represents a huge decrease from the estimated 300,000 new cases in 1998.

African trypanosomiasis symptoms occur in two stages. In the first stage, known as the haemolymphatic phase, the trypanosomes multiply in subcutaneous tissues, blood and lymph. The haemolymphatic phase is characterized by bouts of fever, headaches, joint pains and itching. In the second stage, the neurological phase, the parasites cross the bloodbrain barrier to infect the central nervous system. It is in this stage when more obvious signs and symptoms of the disease appear: changes of behaviour, confusion, sensory disturbances and poor coordination. Disturbance of the sleep cycle, which gives the disease its name, is an important feature of the second stage of the disease. Without treatment, the disease is invariably fatal, with progressive mental deterioration leading to coma, systemic organ failure, and death.

Four drugs are registered for the treatment of sleeping sickness. The protocol depends on the stage of the disease. The current standard treatment for first-stage disease is intravenous or intravenous pentamidine (for *T.b. gambiense*), or intravenous suramin (for *T.b. rhodesiense*). The current standard treatment for second-stage disease is: Intravenous melarsoprol, or interavenous melarsoprol in combination with oral nifurtimox, intravenous effornithine only or effornithine in combination with nifurtimox. All of the drugs have undesirable or sometime serious side effects. For example, 3-10% of patients those injected with Melarsoprol (Arsobal), an organoarsenical, developed reactive encephalopathy (convulsions, progressive coma, or psychotic reactions), and 10-70% of such cases result in death.

Chagas disease, also called American trypanosomiasis, is a tropical parasitic disease caused by the flagellate protozoan *Trypanosoma cruzi*. *T. cruzi* is commonly transmitted to humans and other mammals by the blood-sucking "kissing bugs" of the subfamily Triatominae (family Reduviidae).

Chagas disease is contracted primarily in the Americas. It is endemic in twenty one Central and Latin American coun-

tries; particularly in poor, rural areas of Mexico, Central America, and South America. Large-scale population movements from rural to urban areas of Latin America and to other regions of the world have increased the geographic distribution of Chagas disease, and cases have been noted in many countries, particularly in Europe. Although there are triatomine bugs in the U.S., only very rarely vectorborne cases of Chagas disease have been documented.

Each year, an estimated 10 to 15 million people across the world are infected with Chagas disease, most of whom do not know they are infected. Every year, 14,000 people die as a consequence of the disease. In Central and South America, Chagas kills more people than any other parasite-borne disease, including malaria. By applying published seroprevalence figures to immigrant populations, CDC estimates that more than 300,000 persons with *Trypanosoma cruzi* infection live in the United States. Most people with Chagas disease in the United States acquired their infections in endemic countries.

Chagas disease has an acute and a chronic phase. If untreated, infection is lifelong. Acute Chagas disease occurs 20 immediately after infection, may last up to a few weeks or months, and parasites may be found in the circulating blood. Infection may be mild or asymptomatic. There may be fever or swelling around the site of inoculation (where the parasite entered into the skin or mucous membrane). Rarely, acute 25 infection may result in severe inflammation of the heart muscle or the brain and lining around the brain. The initial acute phase is responsive to antiparasitic treatments, with 60-90% cure rates. Following the acute phase, most infected people enter into a prolonged asymptomatic form of disease (called "chronic indeterminate") during which few or no parasites are found in the blood. During this time, most people are unaware of their infection. Many people may remain asymptomatic for life and never develop Chagas-related symptoms.

However, an estimated 20-30% of infected people will develop debilitating and sometimes life-threatening medical problems over the course of their lives.

The symptoms of Chagas disease vary over the course of an infection. In the early, acute stage, symptoms are mild and 40 usually produce no more than local swelling at the site of infection. The initial acute phase is responsive to antiparasitic treatments, with 60-90% cure rates. After 4-8 weeks, individuals with active infections enter the chronic phase of Chagas disease that is asymptomatic for 60-80% of chronically 45 infected individuals through their lifetime.

There is no vaccine against Chagas disease. Treatment for Chagas disease focuses on killing the parasite and managing signs and symptoms.

During the acute phase of Chagas disease, the drugs currently available for treatment are benznidazole and nifurtimox. Once Chagas disease reaches the chronic phase, medications aren't effective for curing the disease. Instead, treatment depends on the specific signs and symptoms. However, problems with these current therapies include their diverse side effects, the length of treatment, and the requirement for medical supervision during treatment. Resistance to the two frontline drugs has already occurred. The antifungal agent Amphotericin b has been proposed as a second-line drug, but this drug is costly and relatively toxic.

In view of the foregoing, it is desirable to develop novel compounds as antiparasitic agents.

SUMMARY OF THE INVENTION

The invention therefore provides a compound of the formula (I):

4

I

or a pharmaceutical acceptable salt, tautomer or stereoisomer thereof, wherein

X is O or NR₄, wherein R₄ is selected from hydrogen, C_{1-4} alkyl, halo C_{1-4} alkyl, and — $C(O)R_{10}$, wherein R₁₀ is hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, amino, C_{1-4} alkylamino, C_{3-6} cycloalkyl and C_{4-6} heterocycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from hydroxyl, halo and C_{1-4} alkyl;

 L_1 is —C(O)— or — $S(O)_2$ —;

R₁ is selected from nitro, C_{1-4} alkyl, C_{1-6} alkoxy, amino, C_{5-9} heteroaryl, C_{3-6} cycloalkyl and C_{4-6} heterocycloalkyl, each of which is optionally substituted by 1-2 substituent independently selected from halo, cyano, amino, C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-6} alkoxy, and C_{1-4} alkylcarbonyl; or —NHL₁R₁ is nitro;

 R_3 is selected from hydrogen, halo, cyano, C_{1-4} alkyl and halo C_{1-4} alkyl;

 L_2 is selected from a bond, —C(O)— and —S(O)₂—; R_2 is selected from hydrogen, C_{1-6} alkyl, C_{1-4} alkoxy,

 K_2 is selected from hydrogen, C_{1-6} ankyl, C_{1-4} ankoxy, amino, C_{3-6} cycloalkyl, C_{4-6} heterocycloalkyl, and C_{5-6} heteroaryl; wherein

the C_{1-6} alkyl, C_{1-4} alkoxy, C_{3-6} cycloalkyl, and amino of R_2 are each optionally substituted by 1-2 substituents independently selected from halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, $-NR_{9a}R_{9b}$, C_{3-6} cycloalkyl, C_{5-6} heterocycloalkyl, phenyl and C_{5-6} heteroaryl, wherein R_{9a} is hydrogen or C_{1-4} alkyl and R_{9b} is selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkylcarbonyl and C_{1-4} alkoxycarbonyl, and the C_{5-6} heterocycloalkyl, phenyl or C_{5-6} heteroaryl is further optionally substituted by 1-2 substituents independently selected from hydroxyl, C_{1-4} alkyl and C_{1-4} alkoxycarbonyl.

the $\rm C_{5-6}$ heteroaryl of $\rm R_2$ is optionally substituted with 1-2 substituents selected from hydroxy, $\rm C_{1-4}$ alkyl, and $\rm C_{1-4}$ alkoxycarbonyl,

the C $_{3-6}$ cycloalkyl or C $_{4-6}$ heterocycloalkyl of R $_2$ are each independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, C $_{1-4}$ alkyl, haloC $_{1-4}$ alkyl, C $_{1-4}$ alkoxylC $_{1-4}$ alkyl, aminocarbonyl, C $_{1-4}$ alkoxycarbonyl, and C $_{1-4}$ alkoxycarbonylaminoC $_{1-4}$ alkyl,

 R_5 is hydrogen or C_{1-4} alkyl;

or R_2 and R_5 together with L_2 and N to which R_2 and R_5 respectively attached are taken together to form a hetero C_{5-6} cycloalkyl optionally substituted by 1 to 3 substituents selected from oxo, C_{1-4} alkyl, $-(CH_2)_{1-4}$ OH, $-(CH_2)_{1-4}$ NR $_a$ R $_b$, wherein R_a and R_b are each independently hydrogen, C_{1-4} alkyl or C_{3-6} cycloalkyl;

or $-N(R_5)L_2R_2$ is nitro or $-N=CHN(CH_3)_2$.

In a second aspect, the present invention provides a pharmaceutical composition which contains a compound of the invention selected from Formula I, a N-oxide derivative, indi-

vidual isomers and mixture of isomers thereof; or a pharmaceutically acceptable salt thereof, in admixture with one or more suitable excipients.

In a third aspect, the present invention provides a method of treating a disease in an animal in which a compound of the 5 invention can prevent, inhibit or ameliorate the pathology and/or symptomology of a disease caused by a parasite of the Leishmania genus, for example, Leishmania donovani, Leishmania infantum, Leishmania braziliensis, Leishmania panamensis, Leishmania guayanensis, Leishmania amazonensis, Leishmania mexicana, Leishmania tropica, Leishmania major, Trypanosoma cruzi, and Trypanosoma brucei and a parasite of the Trypanosoma genus, for example, Trypanosoma cruzi and Trypanosoma brucei, which method comprises administering to the animal a therapeutically effective 15 amount of a compound selected from Formula I, an N-oxide derivative, individual isomers and mixture of isomers thereof, or a pharmaceutically acceptable salt thereof.

In a fourth aspect, the present invention provides a compound of Formula I, an N-oxide derivative, individual isomers and mixture of isomers thereof, or a pharmaceutically acceptable salt thereof, for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a disease caused by a parasite of the *Leishmania* genus, for example, *Leishmania donovani*, *Leishmania infantum*, *Leishmania braziliensis*, *Leishmania panamensis*, *Leishmania mazonensis*, *Leishmania mazonensis*, *Leishmania mexicana*, *Leishmania tropica*, *Leishmania major*, *Trypanosoma cruzi*, and *Trypanosoma brucei* and a parasite of the *Trypanosoma* genus, such as, for example, *Trypanosoma soma cruzi* and *Trypanosoma brucei*. Particularly, the parasite is a *Leishmania*, and the disease is Leishmaniasis.

In a fifth aspect, the present invention provides the use of a compound selected from Formula I, an N-oxide derivative, individual isomers and mixture of isomers thereof, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for treating a disease caused by a parasite in an animal. The disease may be Leishmaniasis, Human African Trypanosomiasis and/or Chagas disease.

Unless specified otherwise, the term "compounds of the 40 present invention" refers to compounds of Formula (I) and subformulae thereof, salts of the compound, hydrates or solvates of the compounds, salts, as well as all stereoisomers (including diastereoisomers and enantiomers), tautomers and isotopically labeled compounds (including deuterium substitutions). Compounds of the present invention further comprise polymorphs of compounds of formula I (or subformulae thereof) and salts thereof.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

For purposes of interpreting this specification, the following definitions will apply and whenever appropriate, terms 55 used in the singular will also include the plural and vice versa.

"Acyl" as used herein refers to the radical $C(\bigcirc O)R_a$, where R_a is hydrogen or a non-hydrogen substituent on the carbonyl carbon, forming different carbonyl-containing groups including, but are not limited to, acids, acid halides, 60 aldehydes, amides, esters, and ketones.

"Alkoxy" as used herein refers the radical —O-alkyl, wherein the alkyl is as defined herein. C_X alkoxy and C_{X-Y} alkoxy as used herein describe alkoxy groups where X and Y indicate the number of carbon atoms in the alkyl chain. Representative examples of C_{1-10} alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-

6

butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and decyloxy. The alkyl portion of the alkoxy may be optionally substituted, and the substituents include those described for the alkyl group below.

"Alkyl" as used herein refers to a fully saturated branched or unbranched hydrocarbon chain having up to 10 carbon atoms. C_X alkyl and C_{X-Y} alkyl as used herein describe alkyl groups where X and Y indicate the number of carbon atoms in the alkyl chain. For example, C_{1-10} alkyl refers to an alkyl radical as defined above containing one to ten carbon atoms. C₁₋₁₀ alkyl includes, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, n-decyl and the like. Alkyl represented along with another radical like arylalkyl, heteroarylalkyl, alkoxyalkyl, alkoxyalkyl, alkylamino, where the alkyl portion shall have the same meaning as described for alkyl and is bonded to the other radical. For example, (C_{6-10}) aryl (C_{1-3}) alkyl includes, benzyl, phenylethyl, 1-phenylethyl, 3-phenylpropyl, 2-thienylmethyl, 2-pyridinylmethyl and the like.

Unless stated otherwise specifically in the specification, an alkyl group may be unsubstituted or substituted by one or more substituents to the extent that such substitution makes sense chemically. Typical substituents include, but are not limited to halo, hydroxyl, alkoxy, cyano, amino, acyl, aryl, arylalkyl, and cycloalkyl, or an heteroforms of one of these groups, and each of which can be substituted by the substituents that are appropriate for the particular group.

"Alkenyl" as used herein refers to a straight or branched, hydrocarbon chain having up to 10 carbon atoms and at least one carbon-carbon double bond. C_X alkenyl and C_{X-Y} alkenyl as used herein describe alkenyl groups where X and Y indicate the number of carbon atoms in the alkenyl chain. Examples of C_{2-7} alkenyl include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, and the like. The alkenyl may be optionally substituted, and the substituents include those described for the alkyl group descried herein.

"Alkynyl" as used herein refers to a straight or branched, hydrocarbon chain having up to 10 carbon atoms and at least one carbon-carbon triple bond. C_X alkenyl and C_{X-Y} alkenyl as used herein describe alkynyl groups, where X and Y indicate the number of carbon atoms in the alkynyl chain. For example, C_{2-7} alkenyl include, but are not limited to, ethynyl, propargyl, 3-methyl-1-pentynyl, 2-heptynyl and the like. An alkynyl may be optionally substituted, and the substituents include those described for the alkyl group described herein.

"Alkylene" as used herein refers to a divalent alkyl group defined herein. Examples of C₁₋₁₀alkylene includes, but are not limited to, methylene, ethylene, n-propylene, iso-propylene, n-butylene, sec-butylene, iso-butylene, tert-butylene, n-pentylene, isopentylene, neopentylene, n-hexylene, 3-methylhexylene, 2,2-dimethylpentylene, 2,3-dimethylpentylene, n-heptylene, n-octylene, n-nonylene and n-decylene. An alkylene group may be optionally substituted, and the substituents include those described for the alkyl group described herein.

"Alkenylene" as used herein refers to a divalent alkenyl group defined herein. Examples of C_{1-3} alkenylene include, but are not limited to, ethene-1,2-diyl, propene-1,3-diyl, and methylene-1,1-diyl. An alkenylene may be optionally substituted, and the substituents include those described for the alkyl group described herein.

"Alkynylene" as used herein refers to a divalent alkynyl group defined herein. Examples of alkynylene include ethyne-1,2-diylene, propyne-1,3-diylene, and the like. An

alkynylene may be optionally substituted, and the substituents include those described for the alkyl group described berein

"Amino" as used herein refers to the radical —NH₂. When an amino is described as "substituted" or "optionally substituted", the term includes NR'R" wherein each R' and R" is independently H, or is an alkyl, alkenyl, alkynyl, acyl, aryl, aryl, cycloalkyl, arylalkyl cycloalkylalkyl group or a heteroform of one of these groups, and each of the alkyl, alkenyl, alkynyl, acyl, aryl, arylalkyl or groups or heteroforms of one of these groups, each of which is optionally substituted with the substituents described herein as suitable for the corresponding group.

The term "amino" also includes forms wherein R' and R" are linked together to form a 3-8 membered ring which may be saturated, unsaturated or aromatic and which contains 1-3 heteroatoms independently selected from N, O and S as ring members, and which is optionally substituted with the substituents described as suitable for alkyl groups or, if NR'R" is an aromatic group, it is optionally substituted with the substituents described as typical for heteroaryl groups.

Unless indicated otherwise, the compounds of the invention containing amino moieties may include protected derivatives thereof. Suitable protecting groups for amino moieties 25 include acetyl, tert-butoxycarbonyl, benzyloxycarbonyl, and the like.

"Alkylamino" as used herein refers to the radical — NR_aR_b , where at least one of, or both, R_a and R_b are an alkyl group as described herein. An $C_{1.4}$ alkylamino group 30 includes — $NHC_{1.4}$ alkyl and — $N(C_{1.4}$ alkyl)₂; e.g., — $NHCH_3$, — $N(CH_3)_2$, — $NH(CH_2CH_3)$, — $N(CH_2CH_3)_2$, and the like.

"Aromatic" as used herein refers to a moiety wherein the constituent atoms make up an unsaturated ring system, where 35 all atoms in the ring system are sp² hybridized and the total number of pi electrons is equal to 4n+2. An aromatic ring may be such that the ring atoms are only carbon atoms or may include carbon and non-carbon atoms (see Heteroaryl).

"Aryl" as used herein refers to a 6-14 membered monocyclic or polycyclic aromatic ring assembly where all the ring atoms are carbon atoms. Typically, the aryl is a 6 membered monocyclic, a 10-12 membered bicyclic or a 14-membered fused tricyclic aromatic ring system. C_X aryl and C_X aryl as used herein describe an aryl group where X and Y indicate the 45 number of carbon atoms in the ring system. C_{6-14} aryls include, but are not limited to, phenyl, biphenyl, naphthyl, azulenyl, and anthracenyl.

An aryl may be unsubstituted or substituted by 1-5 (such as one, or two, or three) substituents independently selected 50 from the group consisting of hydroxy, thiol, cyano, nitro, C_{1_4} alkyl, C_{1_4} alkenyl, C_{1_4} alkynyl, C_{1_4} alkoxy, thio C_{1_4} alkyl, C_{1_4} alkenyloxy, C_{1_4} alkynyloxy, halogen, C_{1_4} alkylcarbonyl, carboxy, C_{1_4} alkoxycarbonyl, amino, C_{1_4} alkylamino, di- C_{1_4} alkylamino, C_{1_4} alkylaminocarbonyl, di- 55 C_{1_4} alkylaminocarbonyl, C_{1_4} alkylaminosulfonyl, sulfamoyl, alkylsulfamoyl, C_{1_4} alkylaminosulfonyl, aryl, heteroaryl, cycloalkyl and heterocycloalkyl, wherein each of the afore-mentioned substitutents may be further substituted by one or more substituents independently selected from halogen, alkyl, hydroxyl or C_{1_4} alkoxy groups.

When an "aryl" is represented along with another radical like "arylalkyl", "aryloxyalkyl", "aryloxycarbonyl", "aryloxy-carbonylalkyl", the aryl portion shall have the same 65 meaning as described in the above-mentioned definition of "aryl".

8

"Aryloxy" as used herein, refers to the radical —O-aryl, wherein aryl is as defined herein.

"Bicyclic" or "bicyclyl" as used here in refers to a ring assembly of two rings where the two rings are fused together, linked by a single bond or linked by two bridging atoms. The rings may be a carbocyclyl, a heterocyclyl, or a mixture thereof.

"Bridging ring" as used herein refers to a polycyclic ring system where two ring atoms that are common to two rings are not directly bound to each other. One or more rings of the ring system may also comprise heteroatoms as ring atoms. Non-exclusive examples of bridging rings include norbornanyl, 7-oxabicyclo[2.2.1]heptanyl, adamantanyl, and the like.

"Carbamoyl" as used herein refers to the radical —C(O) NR_a — where R_a is H, or is an alkyl, alkenyl, alkynyl, acyl, aryl, or arylalkyl group or a heteroform of one of these groups, and each of the alkyl, alkenyl, alkynyl, acyl, aryl, arylalkyl or heteroforms of one of these groups is optionally substituted with the substituents described herein as suitable for the corresponding group.

"Carbamate" as used herein refers to the radical —OC(O) NR_aR_b where R_a and R_b are each independently H, or is an alkyl, alkenyl, alkynyl, acyl, aryl, or arylalkyl group or a heteroform of one of these groups, and each of the alkyl, alkenyl, alkynyl, acyl, aryl, arylalkyl or heteroforms of one of these groups is optionally substituted with the substituents described herein as suitable for the corresponding group.

"Cycloalkyl", as used herein, means a radical comprising a non-aromatic, saturated or partially unsaturated, monocyclic, bicyclic, tricyclic, fused, bridged or spiro polycyclic hydrocarbon ring system of 3-20 carbon atoms. C_X -cycloalkyl and C_{X-Y} -cycloalkyl are typically used where X and Y indicate the number of carbon atoms in the ring assembly. For example, C_{3-6} -cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, 2,5-cyclohexadienyl.

Exemplary monocyclic cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl and cyclohexenyl and the like. Exemplary bicyclic cycloalkyls include bornyl, norbornanyl, indyl, hexahydroindyl, tetrahydronaphthyl, decahydronaphthyl, bicyclo [2.1.1]hexyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.1]heptenyl, 6,6-dimethylbicyclo[3.1.1]heptyl, 2,6,6-trimethylbicyclo [3.1.1]heptyl, bicyclo[2.2.2]octyl. Exemplary tricyclic cycloalkyl groups include, for example, adamantyl.

A cycloalkyl may be unsubstituted or substituted by one, or two, or three, or more substituents independently selected from the group consisting of hydroxyl, thiol, cyano, nitro, oxo, alkylimino, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkylcarbonyl, carboxy, C_{1-4} alkylcarbonyl, amino, C_{1-4} alkylamino, di- C_{1-4} alkylamino, C_{1-4} alkylamino, carbonyl, di- C_{1-4} alkylamino, sulfonyl, sulfamoyl, alkylsulfamoyl, C_{1-4} alkylaminosulfonyl where each of the afore-mentioned hydrocarbon groups (e.g., alkyl, alkenyl, alkynyl, alkoxy residues) may be further substituted by one or more residues independently selected at each occurrence from halogen, hydroxyl or C_{1-4} alkoxy groups.

"Cycloalkylene", as used herein, refers to a divalent radical comprising a cycloalkyl ring assembly as defined herein.

"Cycloalkoxy", as used herein, refers to —O-cycloalkyl, wherein the cycloalkyl is defined herein. Representative examples of C₃₋₁₂cycloalklyoxy include, but are not limited to, monocyclic groups such as cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclopentenyloxy, cyclohexyloxy and cyclohexenyloxy and the like. Exemplary bicyclic hydrocarbon groups include bornyloxy, indyloxy, hexahydroindyloxy, tet-

rahydronaphthyloxy, decahydronaphthyloxy, bicyclo[2.1.1] hexyloxy, bicyclo[2.2.1]heptyloxy, bicyclo[2.2.1]hepteny-6,6-dimethylbicyclo[3.1.1]heptyloxy, trimethylbicyclo[3.1.1]heptyloxy, bicyclo[2.2.2]octyloxy and the like. Exemplary tricyclic hydrocarbon groups 5 include, for example, adamantyloxy.

"Cyano", as used herein, refers to the radical —CN.

"EC₅₀", refers to the molar concentration of an inhibitor or modulator that produces 50% efficacy.

"Fused ring", as used herein, refers to a multi-ring assem- 10 bly wherein the rings comprising the ring assembly are so linked that the ring atoms that are common to two rings are directly bound to each other. The fused ring assemblies may be saturated, partially saturated, aromatics, carbocyclics, heterocyclics, and the like. Non-exclusive examples of common 15 fused rings include decalin, naphthalene, anthracene, phenanthrene, indole, benzofuran, purine, quinoline, and the

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo.

"Haloalkyl", or halo-substituted-alkyl" as used herein, refers to an alkyl as defined herein, which is substituted by one or more halo atoms defined herein. The haloalkyl can be mono-haloalkyl, dihaloalkyl or polyhaloalkyl including perhaloalkyl. A monohaloalkyl can have one iodo, bromo, chloro 25 eroaryl group, wherein the heteroaryl is as defined in this or fluoro within the alkyl group. Dihaloalky and polyhaloalkyl groups can have two or more of the same halo atoms or a combination of different halo groups within the alkyl. C_X haloalkyl and C_{X-Y} haloalkyl are typically used where X and Y indicate the number of carbon atoms in the alkyl chain. 30 Non-limiting examples of C₁₋₄haloalkyl include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoroprodifluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropro- 35 pyl. A C₁₋₄ perhaloalkyl group refers to a C₁₋₄alkyl group having all hydrogen atoms replaced with halo atoms.

"Heteroaryl", as used herein, refers to a 5-14 membered ring assembly (e.g., a 5-7 membered monocycle, an 8-10 membered bicycle, or a 13-14 membered tricyclic ring sys- 40 tem) having 1 to 8 heteroatoms selected from N, O and S as ring atoms and the remaining ring atoms are carbon atoms. The nitrogen atoms of such heteroaryl rings can be optionally quaternerized and the sulfur atoms of such heteroaryl rings can be optionally oxidized. C_X heteroaryl and C_{X-Y} heteroaryl 45 as used herein describe heteroaryls where X and Y indicate the number of ring atoms in the heteroaryl ring. Typical C₅₋₇heteroaryl groups include thienyl, furanyl, imidazolyl, pyrazolyl, pyrrolyl, pyrrolinyl, thiazolyl, 1,3,4-thiadiazolyl, isothiazolyl, oxazolyl, oxadiazole isoxazolyl, triazolyl, tetra- 50 zolyl, pyridyl, pyridazinyl, pyrazinyl, pyrimidinyl, and the like. Bicyclic or tricyclic C_{8-14} heteroaryls include, but are not limited to, those derived from benzo[b]furan, benzo [b]thiophene, benzimidazole, imidazo[4,5-c]pyridine, quinazoline, thieno[2,3-c]pyridine, thieno[3,2-b]pyridine, 55 thieno[2,3-b]pyridine, quinazolinyle, pteridinyl, indolizine, imidazo[1,2a]pyridine, quinoline, quinolinyl, isoquinoline, phthalazine, quinoxaline, naphthyridine, naphthyridinyl, quinolizine, indolyl, indole, isoindole, indazole, indoline, benzoxazole, benzopyrazole, benzothiazole, imidazo[1,5-a] 60 pyridine, pyrazolo[1,5-a]pyridine, imidazo[1,2-a]pyrimidine, imidazo[1,2-c]pyrimidine, imidazo[1,5-a]pyrimidine, imidazo[1,5-c]pyrimidine, pyrrolo[2,3-b]pyridine, pyrrolo [2,3-c]pyridine, pyrrolo[3,2-c]pyridine, pyrrolo[3,2-b]pyridine, pyrrolo[2,3-d]pyrimidine, pyrrolo[3,2-d]pyrimidine, 65 pyrrolo[2,3-b]pyrazine, pyrazolo[1,5-a]pyridine, pyrrolo[1, 2-b]pyridazine, pyrrolo[1,2-c]pyrimidine, pyrrolo[1,2-a]py10

rimidine, pyrrolo[1,2-a]pyrazine, triazo[1,5-a]pyridine, pteridine, purine, purinyl, carbazole, acridine, phenazine, phenothiazene, phenoxazine, 1,2-dihydropyrrolo[3,2,1-hi] indole, indolizine, pyrido[1,2-a]indole and 2(1H)-pyridi-

A heteroaryl may be unsubstituted or substituted with one or more substituents independently selected from hydroxyl, thiol, cyano, nitro, C₁₋₄alkyl, C₁₋₄alkenyl, C₁₋₄alkynyl, C_{1-4} alkoxy, thio C_{1-4} alkyl, C_{1-4} alkenyloxy, C_{1-4} alkynyloxy, halogen, C₁₋₄alkylcarbonyl, carboxy, C₁₋₄alkoxycarbonyl, amino, C₁₋₄alkylamino, di-C₁₋₄alkylamino, C₁₋₄alkylaminocarbonyl, di-C₁₋₄alkylaminocarbonyl, C₁₋₄alkylcarbonylamino, C₁₋₄alkylcarbonyl(C₁₋₄alkyl)amino, sulfonyl, sulfamoyl, alkylsulfamoyl, C₁₋₄alkylaminosulfonyl where each of the afore-mentioned hydrocarbon groups (e.g., alkyl, alkenyl, alkynyl, alkoxy residues) may be further substituted by one or more residues independently selected at each occurrence from halogen, hydroxyl or C₁₋₄alkoxy groups.

When a heteroaryl is represented along with another radi-20 cal like "heteroaryloxy", "heteroaryloxyalkyl", "heteroaryloxycarbonyl", the heteroaryl portion shall have the same meaning as described in the above-mentioned definition of "heteroarvl".

"Heteroaryloxy", as used herein, refers to an -O-het-Application.

"Heteroatom", as used herein, refers to an atom that is not a carbon atom. Particular examples of heteroatoms include, but are not limited to nitrogen, oxygen, and sulfur.

"Heterocycloalkyl", as used herein, refers to a 4-20 membered, non-aromatic, saturated or partially unsaturated, monocyclic or polycyclic ring system, comprising 1-8 heteroatoms as ring atoms and that the remaining ring atoms are carbon atoms. The heteroatoms are selected from N, O, and S, preferably O and N. The nitrogen atoms of the heterocycloalkyl can be optionally quaternerized and the sulfur atoms of the heterocycloalkyl can be optionally oxidized. The heterocycloalkyl can include fused or bridged rings as well as spirocyclic rings. C_xheterocycloalkyl and C_{x-y}heterocycloalkyl are typically used where X and Y indicate the number of ring atoms in the ring. Typically, the heterocycloalkyl is 4-8-membered monocyclic ring containing 1 to 3 heteroatoms, a 7 to 12-membered bicyclic ring system containing 1-5 heteroatoms, or a 10-15-membered tricyclic ring system containing 1 to 7 heteroatoms. Examples of C₄₋₆heterocycloalkyl include azetidinyl, tetrahydrofuran (THF), dihydrofuran, 1,4dioxane, morpholine, 1,4-dithiane, piperazine, piperidine, 1,3-dioxolane, imidazolidine, imidazoline, pyrazolidinyl, pyrroline, pyrrolidine, tetrahydropyran, dihydropyran, oxathiolane, dithiolane, 1,3-dioxane, 1,3-dithiane, oxathiane, thiomorpholine, and the like

A heterocycloalkyl may be unsubstituted or substituted with 1-5 substituents (such as one, or two, or three) each independently selected from hydroxyl, thiol, cyano, nitro, oxo, alkylimino, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, C_{1-4} alkoxy, C_{1-4} thioalkyl, C_{1-4} alkenyloxy, C_{1-4} alkynyloxy, halogen, C₁₋₄alkylcarbonyl, carboxy, C₁₋₄alkoxycarbonyl, amino, C₁₋₄alkylamino, di-C₁₋₄alkylamino, C₁₋₄alkylaminocarbonyl, di-C₁₋₄alkylaminocarbonyl, C₁₋₄alkylcarbonylamino, C₁₋₄alkylcarbonyl(C₁₋₄alkyl)amino, sulfonyl, sulfamoyl, alkylsulfamoyl, C_{1-4} alkylaminosulfonyl where each of the afore-mentioned hydrocarbon groups (e.g., alkyl, alkenyl, alkynyl, alkoxy residues) may be further substituted by one or more residues independently selected at each occurrence from halogen, hydroxyl or C₁₋₄alkoxy groups. When a heterocycloalkyl forms part of other groups like "heterocycloalkyl-alkyl", "heterocycloalkoxy", "heterocycloalkylaryl", the heteroaryl portion shall have the same meaning as described in the above-mentioned definition of "heteroaryl"

"Heterocycloalkylene", as used herein, refers to a cycloalkylene, as defined in this Application, provided that one or more of the ring member carbon atoms is replaced by 5 a heteroatom.

"Heterocycloalkyl fused to a phenyl" as used herein, refers to a bicyclic fused ring system that one of the ring is heterocycloalkyl as defined above and the other ring is a phenyl. A heterocycloalkyl fused to a phenyl includes but are not limited to benzo[b][1,4]oxazinyl, oxo-benzo[b][1,4]oxazinyl, tetrahydroquinoxalinyl, tetrahydroquinolinyl, indolinyl, benzo [d]imidazolyl, and the like.

"Heterocyclyl", "heterocycle" or "heterocyclo", as used herein, refers to a 3-20 membered, monocyclic or polycyclic 15 ring system containing at least one heteroatom moiety selected from the group consisting of N, O, SO, SO $_2$, (C=O), and S, and preferably N, O, S, optionally containing one to four additional heteroatoms in each ring. C_X -heterocyclyl and C_{X-Y} -heterocyclyl are typically used where X and Y indicate 20 the number of ring atoms in the ring system. Unless otherwise specified, a heterocyclyl may be saturated, partially unsaturated, aromatic or partially aromatic.

Hydroxy, as used herein, refers to the radical —OH.

"Hydroxyalkyl" or "hydroxyl-substituted alkyl" as used 25 herein, refers to an alkyl as defined herein, having one or more of the available hydrogen of the alkyl replaced by a hydroxyl group. For example, a hydroxyC₁₋₄alkyl includes, but are not limited to, —CH₂CH₂OH, —CH(OH)CH₂CH₂OH, —CH(OH)CH₂CH(OH)CH₃.

"Nitro", as used herein, refers to the radical — NO_2 .

"Oxo", as used herein, refers to the divalent radical =O

"Protected derivatives" means derivatives of inhibitors in which a reactive site or sites are blocked with protecting groups. Protected derivatives are useful in the preparation of 35 inhibitors or in themselves may be active as inhibitors. Examples of protected group includes, but are not limited to, acetyl, tetrahydropyran, methoxymethyl ether, β -methoxyethoxymethyl ether, p-methoxybenzyl, methylthiomethyl ether, pivaloyl, silyl ether, carbobenzyloxy, benzyl, tert-butoxycarbonyl, p-methoxyphenyl, 9-fluorenylmethyloxycarbonyl, acetals, ketals, acylals, dithianes, methylesters, benzyl esters, tert-butyl esters, and silyl esters. A comprehensive list of suitable protecting groups can be found in T. W. Greene, *Protecting Groups in Organic Synthesis*, 3rd edition, John 45 Wiley & Sons, Inc. 1999.

"Unsubstituted or substituted" or "optionally substituted" as used herein indicate the substituent bound on the available valance of a named group or radical. "Unsubstituted" as used herein indicates that the named group or radical will have no further non-hydrogen substituents. "Substituted" or "optionally substituted" as used herein indicates that at least one of the available hydrogen atoms of named group or radical has been (or may be) replaced by a non-hydrogen substituent.

"Substituted terminally" as used herein referred to a substituent replacing a hydrogen at a terminal position of the parent molecule. For example $C_{1.4}$ alkyl substituted terminally by an amino means $-C_{1.4}$ alkylene-amino, which includes $-(CH_2)-NH_2$, $-(CH_2)_2-NH_2$, $-(CH_2)_3-NH_2$, $-(CH_2)CH_2CH_2-NH_2$, $-(CH_2)_4-NH_2$, 60 $-(CCH_2)(CH_2-NH_2)$, $-(CCH_3)_2(CH_2-NH_2)$, and the like.

Unless otherwise specified, examples of substituents may include, but are not limited to, halo, nitro, cyano, thio, oxy, hydroxy, carbonyloxy, C_{1-6} alkoxy, C_{6-10} aryloxy, hetero 65 C_{5-10} aryloxy, carbonyl, oxycarbonyl, aminocarbonyl, amino, C_{1-6} alkylamino, sulfonamido, imino, sulfonyl, sulfinyl,

 $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ haloalkyl, hydroxy $C_{1\text{-}6}$ alkyl, carbonyl $C_{1\text{-}6}$ alkyl, thiocarbonyl $C_{1\text{-}10}$ alkyl, sulfonyl $C_{1\text{-}6}$ alkyl, sulfinyl $C_{1\text{-}6}$ alkyl, $C_{1\text{-}10}$ azaalkyl, imino $C_{1\text{-}6}$ alkyl, $C_{3\text{-}12}$ cycloalkyl $C_{1\text{-}6}$ alkyl, $C_{4\text{-}15}$ heterocycloalkyl $C_{1\text{-}6}$ alkyl, $C_{6\text{-}10}$ aryl $C_{1\text{-}6}$ alkyl, $C_{6\text{-}10}$ aryl $C_{1\text{-}6}$ alkyl, $C_{1\text{-}12}$ bicycloaryl $C_{1\text{-}6}$ alkyl, $C_{9\text{-}12}$ heterobicycloaryl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}12}$ cycloalkyl, $C_{4\text{-}12}$ heterocycloalkyl, $C_{9\text{-}12}$ bicycloaryl, $C_{3\text{-}12}$ heterobicycloalkyl, $C_{4\text{-}12}$ heterobicycloaryl, hetero $C_{1\text{-}10}$ aryl, $C_{9\text{-}12}$ bicycloaryl and $C_{4\text{-}12}$ heterobicycloaryl.

"Sulfamoyl" as used herein refers to the radical $-S(O)_2$ NR_aR_b where R_a and R_b are independently H, or is an alkyl, alkenyl, alkynyl, acyl, aryl, aryl, cycloalkyl, arylalkyl cycloalkylalkyl group or a heteroform of one of these groups, and each of the alkyl, alkenyl, alkynyl, acyl, aryl, arylalkyl groups or heteroforms of one of these groups, is optionally substituted with the substituents described herein as suitable for the corresponding group.

"Sulfanyl" as used herein, means the radical —S—

"Sulfinyl", as used herein, means the radical —S(O)—. It is noted that the term "sulfinyl" when referring to a monovalent substituent can alternatively refer to a substituted sulfinyl group, —S(=O)R, where R is hydrogen or a non-hydrogen substituent on the sulfur atom forming different sulfinyl groups including sulfinic acids, sulfinamides, sulfinyl esters, and sulfoxides.

"Sulfonyl", as used herein, means the radical $-S(O)_2$ —. It is noted that the term "sulfonyl" when referring to a monovalent substituent can alternatively refer to a substituted sulfonyl group, $-S(=O)_2R$, where R is hydrogen or a non-hydrogen substituent on the sulfur atom forming different sulfonyl groups including sulfonic acids, sulfonamides, sulfonate esters, and sulfones.

"Thiocarbonyl", as used herein, refers to the radical -C(=S)—. It is noted that the term thiocarbonyl when referring to a monovalent substituent can alternatively refer to a substituted thiocarbonyl group, -C(=S)R, where R is hydrogen or a non-hydrogen substituent on the carbon atom forming different thiocarbonyl groups including thioacids, thioamides, thioesters, and thioketones.

are symbols denoting the point of attachment of X, to other part of the molecule.

Any definition herein may be used in combination with any other definition to describe a composite structural group. By convention, the trailing element of any such definition is that which attaches to the parent moiety. For example, the composite group alkoxyalkyl would represent an alkoxy group attached to the parent molecule through an alkyl group.

It is noted in regard to all of the definitions provided herein that the definitions should be interpreted as being open ended in the sense that further substituents beyond those specified may be included. Hence, a C_1 alkyl indicates that there is one carbon atom but does not indicate what are the substituents on the carbon atom. Hence, a C_1 alkyl comprises methyl (i.e., —CH $_3$) as well as —CR $_a$ R $_b$ R $_c$ where R $_a$, R $_b$, and R $_c$ may each independently be hydrogen or any other substituent where the atom attached to the carbon is not a hydrogen atom. Hence, —CF $_3$, —CH $_2$ OH and —CH $_2$ CN, for example, are all C_1 alkyls.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

The invention provides a novel class of compounds, pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with a parasite. In particular, the compounds can be used to treat leishmaniasis, Human Trypanosomiasis and/or Chagas disease. The compounds of the invention are effective in inhibiting, ameliorating, or eradicating the pathology and/or symptomology of the parasite.

In a first embodiment, the compound of the invention, or a pharmaceutical acceptable salt, tautomer or stereoisomer thereof, is of Formula I:

$$\begin{array}{c} R_1 \\ L_1 - NH \\ \\ R_3 \end{array}$$

or a pharmaceutical acceptable salt, or a stereoisomer thereof; wherein

X is O or NR₄, wherein R₄ is selected from hydrogen, C_{1-4} alkyl, halo C_{1-4} alkyl, and $-C(O)R_{10}$, wherein R_{10} is 30 hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, amino, C₁₋₄alkylamino, C₃₋₆cycloalkyl and C₄₋₆heterocycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from hydroxyl, halo and C₁₋₄alkyl;

C₅₋₉heteroaryl, C₃₋₆cycloalkyl and C₄₋₆heterocycloalkyl, each of which is optionally substituted by 1-2 substituent independently selected from halo, cyano, 40 amino, C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₆alkoxy, and C_{1-4} alkylcarbonyl; or $-NHL_1R_1$ is nitro;

R₃ is selected from hydrogen, halo, cyano, C₁₋₄alkyl and haloC₁₋₄alkyl;

 L_2 is selected from a bond, -C(O) and $-S(O)_2$; R₂ is selected from hydrogen, C₁₋₆alkyl, C₁₋₄alkoxy, amino, C₃₋₆cycloalkyl, C₄₋₆heterocycloalkyl, and C_{5-6} heteroaryl; wherein

the C₁₋₆alkyl, C₁₋₄alkoxy, C₃₋₆cycloalkyl, and amino of R₂ are each optionally substituted by 1-2 substituents 50 independently selected from halo, hydroxy, $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy, $-NR_{9a}R_{9b}$, $C_{3.6}$ cycloalkyl, $C_{5.6}$ heterocycloalkyl, phenyl and $C_{5.6}$ heteroaryl, wherein R_{9a} is hydrogen or C_{1-4} alkyl and R_{9b} is selected from hydrogen, C₁₋₄alkyl, C₁₋₄alkylcarbonyl 55 and C1.4alkoxycarbonyl, and the C5.6heterocycloalkyl, phenyl or C₅₋₆heteroaryl is further optionally substituted by 1-2 substituents independently selected from hydroxyl, C₁₋₄alkyl and C₁₋₄alkoxycarbonvl:

the C_{5-6} heteroaryl of R_2 is optionally substituted with 1-2 substituents selected from hydroxy, C₁₋₄alkyl, and C₁₋₄alkoxycarbonyl;

the C_{3-6} cycloalkyl or C_{4-6} heterocycloalkyl of R_2 are each independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-4} alkoxyl C_{1-4}

14

alkyl, aminocarbonyl, C₁₋₄alkoxycarbonyl, and C_{1-4} alkoxycarbonylamino C_{1-4} alkyl;

 R_5 is hydrogen or C_{1-4} alkyl;

or R₂ and R₅ together with L₂ and N to which R₂ and R₅, respectively, attached are taken together to form a heteroC₅₋₆cycloalkyl or a heteroC₅₋₆cycloalkenyl, each of which is optionally substituted by 1 to 3 substituents independently selected from oxo, C₁₋₄alkyl, $-(CH_2)_{1-4}OH$, $-(CH_2)_{1-4}NR_aR_b$, wherein R_a and R_b are each independently hydrogen, C₁₋₄alkyl or C₃₋₆cycloalkyl;

or $-N(R_5)L_2R_2$ is nitro or $-N=CHN(CH_3)_2$.

In another embodiment of the compound of the invention, X is O. In one variation, X is NR₄, wherein R₄ is hydrogen, C_{1-4} alkyl, halo C_{1-4} alkyl, or $C(O)R_{10}$, where R_{10} is C₁₋₄alkoxy or C₁₋₄alkylamino. In one variation, X is NR₄ and R₄ is C₁₋₄alkyl. In another variation, X is NR₄ and R₄ is 20 hydrogen, ethyl, —C(O)OCH(CH₃)(CH₂CH₃), and —C(O) OCH(CH₃)₂. In another variation, X is NH.

In another embodiment of the above embodiments and variations of the compound of the invention, L₁ is *—C(O)or * $-S(O)_2$ —. In one variation, L₁ is *-C(O)—. In another variation, L_1 is *— $S(O)_2$ —.

In still another embodiment of the above embodiments and variations of the compound of the invention, R_1 is selected from C₁₋₄alkyl, C₁₋₆alkoxy, amino, C₅₋₉heteroaryl, C₃₋₆cycloalkyl and C₄₋₆heterocycloalkyl, each is optionally substituted by 1-2 substituent independently selected from hydroxyl, halo, cyano, amino, C₁₋₄alkyl, haloC₁₋₄alkyl, $C_{1\text{--}6} alkoxy,\, C_{1\text{--}4} alkylcarbonyl,$ phenyl and $C_{5\text{--}6} heteroaryl.$

In another variation, R₁ is selected from C₁₋₆alkoxy and C_{1-6} alkylamino, wherein the C_{1-6} alkoxy and C_{1-6} alkylamino are each optionally substituted by 1-2 substituents independently selected from C₁₋₄alkyl and C₁₋₄alkoxy.

In still another variation, R₁ is selected from —CH₃, $--CH(CH_3)_2$, —CH₂CH(CH₃)₂, $-(CH_2)_{1-3}CH_3$ -(CH₂)₂OCH₃, -N(CH₃)₂, -N(CH₃)-(CH₂)₂F, CH_2CH_3 , $-N(CH_2CH_3)_2$, $-N(CH_3)OCH_3$, $-OCH_2CH_3$, $-O(CH_2)_3CH_3$ $--OCH(CH_3)_2$, $-OCH_2CH(CH_3)_2$ $--O(CH_2)_2OCH_3$

In still another variation, R₁ is selected from —N(CH₃) CH_2CH_3 , $-N(CH_3)_2$, $-N(CH_2CH_3)_2$, $-N(CH_3)OCH_3$, $-OCH_2CH_3$, $-OCH(CH_3)_2$, $-O(CH_2)_2OCH_3$.

In still another variation, R₁ is selected from C₅₋₉heteroaryl, C₄₋₆heterocycloalkyl, and C₃₋₆cycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, C₁₋₄alkyl and C_{1-4} alkoxy.

In another variation, R₁ is selected from pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, furanyl, thiophenyl, thiazolyl, phenyl, pyrazinyl, cyclopropyl, cyclopentyl, pyrrolidinyl, and indolyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, C₁₋₄alkyl, haloC₁₋₄alkyl and C₁₋₄alkylcarbonyl.

In another embodiment of the above embodiments and variations of the compounds of the invention, in one variation, -L₁-R₁ is selected from —NHC(O)N(CH₃)CH₂CH₃, —NHC $--NHC(O)N(CH_3)_2$, (O)N(CH₃)OCH₃, -NHC(O)N (CH₂CH₃)₂, —NHC(O)OCH₂CH₃, —NHC(O)OCH(CH₃)₂, and -NHC(O)O(CH₂)₂OCH₃.

 $\begin{tabular}{l} \bf 15 \\ \end{tabular}$ In still another variation, -L_1-R_1 is selected from

-continued

In yet another variation, L_1 - R_1 is selected from —C(O) OCH₂CH₃, —C(O)O(CH₂)₂OCH₃,

$$N$$
 and N $*$.

In a particular embodiment of the compound of the invention, $-NHL_1R_1$ is nitro. R_3 is chloro or fluoro.

In another embodiment of above embodiments and variations of the compounds of the invention, R_3 is selected from hydrogen, halo, methyl, or trifluoromethyl. In one variation, R_3 is methyl or trifluoromethyl. In another variation, R_3 is hydrogen.

In another embodiment of above embodiments and variations of the compounds of the invention, R_5 is selected from hydrogen and $C_{1.4}$ alkyl. In one variation, R_5 is $C_{1.4}$ alkyl. In another variation, $C_{1.4}$ is methyl or ethyl. In still another variation, $C_{1.4}$ is hydrogen.

In another embodiment of above embodiments and variations of the compounds of the invention, L_2 is a bond, -C(O)— or $-S(O)_2$ —. In one variation, L_2 is a bond. In another variation, L_2 is -C(O)—. In still another variation, L_2 is $-S(O)_2$ —.

In another embodiment of above embodiments and variations of the compounds of the invention, R_2 is selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}4}$ alkoxy, $C_{3\text{-}6}$ cycloalkoxy, amino, $C_{3\text{-}6}$ cycloalkyl, $C_{5\text{-}6}$ heterocycloalkyl, and $C_{5\text{-}6}$ heteroaryl, 50 wherein

the $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy, $C_{3.6}$ cycloalkoxy, and amino are each optionally substituted by 1-2 substituents independently selected from halo, hydroxy, $C_{1.4}$ alkyl, halo $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy, —NR $_{9a}$ R $_{9b}$, $C_{5.6}$ heterocy-55 cloalkyl, phenyl and $C_{5.6}$ heteroaryl, wherein R $_{9a}$ is hydrogen or $C_{1.4}$ alkyl, and R_{9b} is selected from hydrogen, $C_{1.4}$ alkyl, and $C_{1.4}$ alkoxycarbonyl; and the $C_{5.6}$ heterocycloalkyl, phenyl or $C_{5.6}$ heteroaryl is each further optionally substituted by 1-2 substituents independently selected from halo, hydroxyl, $C_{1.4}$ alkyl and $C_{1.4}$ alkoxycarbonyl;

the C_{5-6} heteroaryl is optionally substituted with 1 to 2 C_{1-4} alkyl;

the C_{3-6} cycloalkyl or C_{4-6} heterocycloalkyl are each independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, C_{1-4} alkyl, halo

 $C_{1.4}$ alkyl, — CH_2OCH_3 , — $C(O)NH_2$, $C_{1.4}$ alkoxycarbonylamino $C_{1.4}$ alkoxycarbonylamino $C_{1.4}$ alkyl.

In one variation, R₂ is selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, —(CH₂) NH_2 , $-(CH_2)_2NH_2$, $-(CH_2)_3NH_2$, $-CH_2C(CH_3)_2NH_2$, $-C(CH_3)_2NH_2$, $-CH_2N(CH_3)_2$, $-(CH_2)_2-NHC(O)OC$ (CH₃)₃, —(CH₂)-piperidin-4-yl, —CH₂-2-hydroxypiperidin-3-yl, —(CH₂)-pyrrolidin-3-yl, —CH₂-(1-ten-butoxycarbonyl)pyrrolidin-3-yl, $-(CH_2)_{2-3}$ -morpholinyl, $-(CH_2)_{1-2}$ --(CH₂)-pyridin-3-yl, 4-fluorophenyl, —(CH₂)₂OH, $-C(CH_3)_2CH_2OH$, $-CH(OH)CH_2OH$, $-(CH_2)_2OCH_3$, ; $-OCH_3$, $-OCH_2CH_3$, $-OCH_2CH_2CH_3$, $-OCH(CH_3)_2$, 1-methylcycopropoxy, —O(CH₂)₂F, —OC(CH₃)₂NH₂, $-OCH_2OCH_3$, $-OCH_2C(CH_3)_2NH_2$, $-O(CH_2)_2$ -NHC $(O)OC(CH_3)_3$ —OCH₂C(CH₃)₂—NHC(O)OC(CH₃)₃ $-NH(CH_3),$ $-NHCH(CH_3)_2$, $-N(CH_3)CH(CH_3)_2$, and -NH-pyridin-3-yl.

In another variation, R₂ is C₅₋₆heteroaryl optionally substituted with 1-2 substituents independently selected from hydroxyl and C₁₋₄alkyl.

In another variation, R_2 is C_{3-6} cycloalkyl or C_{4-6} heterocycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-4} alkoxy, aminocarbonyl, C_{1-4} alkoxycarbonylamino C_{1-4} alkyl, and C_{1-4} alkoxycarbonyl.

In one particular variation, R_2 is $-(CH_2)_{1-2}$ -4-fluorophenyl. In another particular variation, R_2 is C_{1-4} alkylamino. In still another particular variation, R_2 is methyl, isopropyl, methylamino or dimethylamino.

In still another embodiment of above embodiments and variations of the compounds of the invention, -L2-R2 is 35 selected from H, methyl, —(CH₂)₂NH₂, —(CH₂)₃NH₂, $-CH_2C(CH_3)_2NH_2$, $-CH_2$ -piperidin-4-yl, $-CH_2$ -2-hydroxypiperidin-3-yl, $-(CH_2)_{1-2}$ -4-fluorophenyl. -C(O)H, —C(O)-5-methylthiazol-2-yl, —C(O)-2,4-dimethylthiazol-5-yl, —C(O)-cyclopropyl, —C(O)-2,2-difluorocyclopropyl, —C(O)-1-hydroxycyclopropyl, —C(O)-1-cyanocyclopropyl, —C(O)-1-methoxymethylcyclopropyl, —C(O)-1-aminocarbonylcyclopropyl, —C(O)-1-((tert-butoxycarbonyl) aminomethyl)cyclopropyl, —C(O)-cyclobutyl, —C(O)-3fluorocyclobutyl, —C(O)-1-fluorocyclobutyl, —C(O)-3,3-—C(O)-1-trifluotomethylcyclobutyl, difluorocyclobutyl, -C(O)-3,3-dimethylcyclobutyl, —C(O)-azetidin-3-yl, —C(O)-3-methyloxetan-3-yl, —C(O)-pyrrolidin-1-yl, -C(O)—N-methylpiperidin-4-yl, —C(O)-piperidin-4-yl, $-C(O)CH(CH_3)_2$ $-C(O)CH_2CH(CH_3)_2$, CH_2NH_2 , $--C(O)(CH_2)_2NH_2$, $--C(O)CH_2N(CH_3)_2$, --C(O) $(CH_2)_2$ —NHC(O)OC(CH₃)₃, —C(O)(CH₂)₂OH, —C(O) $(CH_2)_2OCH_3$, $--C(O)CH(OH)CH_2OH$, *--- $C(O)C(CH_3)_2$ CH_2OH , $-C(O)(CH_2)_{2-3}$ -morpholinyl, $-C(O)(CH_2)$ -pyrrolidin-3-yl, —C(O)(CH₂)-1-(tert-butoxycarbonyl)pyrrolidin-3-yl, —C(O)(CH₂)-pyridin-3-yl, —C(O)NHCH(CH₃)₂, $-C(O)N(CH_3)CH_2CH_3$, $-C(O)OCH(CH_3)_2$, -C(O) OCH_3 , $-C(O)OCH_2CH_3$, $-C(O)O(CH_2)_2F$, -C(O)O $(CH_2)_2$ —NHC(O)OC(CH₃)₃, $-C(O)OCH_2C(CH_3)_2$ $\mathrm{NHC}(\mathrm{O})\mathrm{OC}(\mathrm{CH}_3)_3, --\mathrm{C}(\mathrm{O})\mathrm{OCH}_2\mathrm{C}(\mathrm{CH}_3)_2\mathrm{NH}_2, --\mathrm{C}(\mathrm{O})\text{-}1\text{-}$ methycyclopropyl, —SO₂CH₃, —SO₂CH(CH₃)₂, SO₂N $(CH_3)_2$, and $-SO_2NH(CH_3)$.

In one variation of the above embodiment, $-L_2-R_2$ is selected from $-C(O)OCH(CH_3)_2$, $-C(O)OCH_2CH_3$, $-C(O)OCH_3$,

In one particular variation, $-L_2-R_2$ is $-C(O)OCH(CH_3)_2$. In yet still another embodiment of above embodiments and variations of the compounds of the invention, R_5 and R_2 with R_5 and $R_$ N and L₂ to which they attached are taken together to form the C₅₋₆heterocycloalkyl or C₅₋₆heterocycloalkenyl selected

wherein C_{1-4} alkyl, $--(CH_2)_{1-4}OH$, $--(CH_2)_{1-4}NR_aR_b$, wherein R_a and R_b are each independently hydrogen, C₁₋₄alkyl or C₅₋₆cycloalkyl.

Particular examples of compounds or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, according to the present invention include, but are not limited to:

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5b]pyridin-6-yl}-5-methyl-1,3-thiazole-2-carboxamide; propan-2-yl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-

imidazo[4,5-b]pyridin-6-yl}carbamate; ethyl N-{2-[3-(5-fluorofuran-2-amido)phenyl]-1H-imidazo [4,5-b]pyridin-6-yl}carbamate;

propan-2-yl N-[2-(2-chloro-5-{[(propan-2-yloxy)carbonyl] 60 amino phenyl)-1H-imidazo [4,5-b] pyridin-6-yl] carbam-

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5b|pyridin-6-yl}-2,4-dimethyl-1,3-thiazole-5-carboxam-

ethyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo [4,5-b]pyridin-6-yl}carbamate;

2-[2-chloro-5-(furan-2-amido)phenyl]-6propan-2-yl {[(propan-2-yloxy)carbonyl]amino}-1H-imidazo[4,5-b] pyridine-1-carboxylate;

N-(4-chloro-3-{6-nitro-1H-imidazo[4,5-b]pyridin-2yl}phenyl)furan-2-carboxamide;

methyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-{4-chloro-3-[6-(2-methylpropanamido)-1H-imidazo[4,5b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(methylamino)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5b]pyridin-6-yl}pyrrolidine-1-carboxamide;

N-{4-chloro-3-[6-(dimethylamino)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(3-methylbutanamido)-1H-imidazo[4,5b|pyridin-2-yl|phenyl|furan-2-carboxamide;

tert-butyl $N-\{1-[(\{2-[2-chloro-5-(furan-2-amido)phenyl]-$ 1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)oxy]-2-methylpropan-2-yl}carbamate;

tert-butyl $N-\{2-[(\{2-[2-chloro-5-(furan-2-amido)phenyl]-$ 1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)oxy] ethyl\carbamate;

25 propan-2-yl N-{2-[2-chloro-5-(5-methylfuran-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-{4-chloro-3-[6-(2,3-dihydroxypropanamido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(3-methoxypropanamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-(3-{6-amino-1H-imidazo[4,5-b]pyridin-2-yl}-4-chlorophenyl)furan-2-carboxamide;

N-[4-chloro-3-(6-{[(pyridin-3-yl)carbamoyl]amino}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide:

2-amino-2-methylpropyl N-{2-[2-chloro-5-(furan-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

-[4-chloro-3-(6-{[(propan-2-yl)carbamoyl]amino}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

N-{4-chloro-3-[6-(3-hydroxypropanamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{3-[6-(2-amino-2-methylpropanamido)-1H-imidazo[4,5b|pyridin-2-yl]-4-chlorophenyl}furan-2-carboxamide;

N-(4-chloro-3-{6-[(piperidin-4-ylmethyl)amino]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

tert-butyl (3R)-3-[({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoylmethyl]pyrrolidine-1-carboxylate;

N-(3-{6-amino-1H-imidazo[4,5-b]pyridin-2-yl}-4-chlorophenyl)-5-methylfuran-2-carboxamide;

N-[4-chloro-3-(6-{[(2-hydroxypyridin-3-ylmethyl]amino}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxa-

N-(3-{6-[(2-amino-2-methylpropyl)amino]-1H-imidazo[4, 5-b]pyridin-2-yl}-4-chlorophenyl)furan-2-carboxamide; N-[4-chloro-3-(6-{2-[(3S)-pyrrolidin-3-yl]acetamido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxam-

ide:

N-{3-[6-(2-aminoacetamido)-1H-imidazo[4,5-b]pyridin-2yl]-4-chlorophenyl}furan-2-carboxamide;

N-[4-chloro-3-(6-{2-[(3R)-pyrrolidin-3-yl]acetamido}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

N-(4-chloro-3-{6-[(1-hydroxycyclopropane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}-1-methylpiperidine-4-carboxamide;

N-[4-chloro-3-(6-{[1-(trifluoromethyl)cyclobutane]amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide:

N-(4-chloro-3-{6-[(3-fluorocyclobutane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

propan-2-yl N-{2-[2-chloro-5-(5-methoxyfuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-(4-chloro-3-{6-[2-(dimethylamino)acetamido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-[(1-cyanocyclopropane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-furan-2-carboxamide;

N-[4-chloro-3-(6-{[1-(methoxymethyl)cyclopropane] amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide:

N-{4-chloro-3-[6-(3-methyloxetane-3-amido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-(4-chloro-3-{6-[(2,2-difluorocyclopropane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide:

N-(4-chloro-3-{6-cyclopropaneamido-1H-imidazo[4,5-b] pyridin-2-yl}phenyl)-furan-2-carboxamide;

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-25b]pyridin-6-yl}piperidine-4-carboxamide;

propan-2-yl N-{2-[2-chloro-5-(5-fluorofuran-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

propan-2-yl N-{2-[2-chloro-5-(5-cyanofuran-2-amido)phe-nyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

1-methylcyclopropyl N-{2-[2-chloro-5-(furan-2-amido)phe-nyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-(4-chloro-3-{6-[(E)-[(dimethylamino)methylidene] amino]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-[(dimethylsulfamoyl)amino]-1H-imidazo [4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-[(methylsulfamoyl)amino]-1H-imidazo [4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

2-fluoroethyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H- 40 imidazo[4,5-b]pyridin-6-yl}carbamate;

propan-2-yl N-(2-{2-chloro-5-[(pyrrolidin-1-yl)carbony-lamino]phenyl}-1H-imidazo[4,5-b]pyridin-6-yl)carbamate;

N-(4-chloro-3-{6-cyclobutaneamido-1H-imidazo[4,5-b]py- 45 ridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-[(3,3-dimethylcyclobutane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-[(3,3-diffuorocyclobutane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide:

N-[2-(2-chloro-5-methanesulfonamidophenyl)-1H-imidazo [4,5-b]pyridin-6-yl]methanesulfonamide;

N-{2-[2-chloro-5-(propane-2-sulfonamido)phenyl]-1H-imi- 55 dazo[4,5-b]pyridin-6-yl}propane-2-sulfonamide;

N-{4-chloro-3-[6-(propane-2-sulfonamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}-5-cyanofuran-2-carboxamide;

ethyl N-{2-[2-chloro-5-(5-cyanofuran-2-amido)phenyl]-1Himidazo[4,5-b]pyridin-6-yl}carbamate;

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}azetidine-3-carboxamide;

tert-butyl N-{[1-({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)cyclopropyl] methyl}carbamate:

1-N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}cyclopropane-1,1-dicarboxamide;

22

N-(4-chloro-3-{6-cyclopropaneamido-1H-imidazo[4,5-b] pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide;

N-(4-chloro-3-{6-[4-(morpholin-4-yl)butanamido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-car-boxamide:

tert-butyl N-{[1-({2-[2-chloro-5-(5-fluorofuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)cy-clopropyl]methyl}carbamate;

tert-butyl N-[2-({2-[2-chloro-5-(5-fluorofuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl) ethyl]carbamate;

N-(3-{6-[(3-aminopropyl)amino]-1H-imidazo[4,5-b]pyridin-2-yl}-4-chlorophenyl)-5-fluorofuran-2-carboxamide;

15 N-(4-chloro-3-{6-[(1-cyanocyclopropane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide:

N-[4-chloro-3-(6-{[1-(trifluoromethyl)cyclobutane]amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]-5-fluorofuran-2-carboxamide;

N-(4-chloro-3-{6-[3-(morpholin-4-yl)propanamido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-car-boxamide:

N-{3-[6-(3-aminopropanamido)-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl}-5-fluorofuran-2-carboxamide;

N-(4-chloro-3-{6-formamido-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide;

propan-2-yl N-(2-{2-chloro-5-[(pyrrolidin-1-yl)carbonylamino]phenyl}-[1,3]oxazolo[4,5-b]pyridin-6-yl)carbamate:

propan-2-yl N-(2-{2-chloro-5-[(furan-2-yl)carbonylamino] phenyl}-[1,3]oxazolo[4,5-b]pyridin-6-yl)carbamate;

5-fluoro-N-{3-[6-(propane-2-sulfonamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

propan-2-yl N-{2-[3-(5-fluorofuran-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate; and

 $N-(3-\{6-amino-1H-imidazo[4,5-b]pyridin-2-yl\}phenyl)-5-fluorofuran-2-carboxamide.$

It is noted that the compounds of the present invention may be in the form of a pharmaceutically acceptable salt. It is further note that the compounds of the present invention may be a mixture of stereoisomers, or the compound may comprise a single stereoisomer.

Further compounds of the invention are detailed in the Examples, infra.

In another aspect, the present invention is directed to a pharmaceutical composition which includes as an active ingredient a compound according to any one of the above embodiments and variations in combination with a pharmaceutically acceptable carrier, diluent or excipient.

In another embodiment, the pharmaceutical composition is a solid formulation adapted for oral administration. In another embodiment, the composition is a liquid formulation adapted for oral administration. In yet another embodiment, the composition is a tablet. In still another embodiment, the composition is a liquid formulation adapted for parenteral administration.

In yet another embodiment, the pharmaceutical composition is adapted for administration by a route selected from the group consisting of orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, and intrathecally.

In another aspect, the present application is directed to a compound or a pharmaceutical composition according to any one of the above embodiments and variations for use in a therapeutic application.

In another aspect, the present application is directed to a 5 compound or a pharmaceutical composition according to any one of the above embodiments and variations for use as a medicament.

In yet another aspect, the present invention is directed to a method for treating, preventing, inhibiting, ameliorating, or 10 eradicating the pathology and/or symptomology of a disease caused by a parasite. The method involves administering to a subject a therapeutically effective amount of a compound or a pharmaceutical composition according to the above embodiments and variations.

In one embodiment of the method of the invention, the disease being treated is Leishmaniasis, Human African Trypanosomiasis, or Chagas disease.

In one embodiment of the method of the invention, the disease being treated is Leishmaniasis caused by the parasite 20 Leishmania donovani, Leishmania infantum, Leishmania braziliensis, Leishmania panamensis, Leishmania guayanensis, Leishmania amazonensis, Leishmania mexicana, Leishmania tropica, or Leishmania major.

In a embodiment, the disease being treated is visceral 25 Leishmaniasis caused by the parasite *Leishmania donovani*.

In another embodiment, the disease being treated is Human African Trypanosomiasis caused by *Trypanosoma brucei*, particularly, by the sub-species *T.b. gambiense* or *T.b. rhodesiense*.

In still another embodiment of the method of the invention, the disease being treated is Chagas disease, (also call American Trypanosomiasis) caused by *Trypanosoma cruzi*.

In the above method of the invention, the compounds or pharmaceutical compositions may be administered prior to, 35 simultaneously with, or after a second agent. The second agent can be other drugs that are known for treating Leishmaniasis, Human African Trypanosomiasis, or Chagas diseases. In one particular variation for treating Leishmaniasis, the second agent is selected from meglumine antimoniate, 40 stibogluconate, Amphotericin, Miltefosine and paromomycin. In another variation, for treating Human African Trypanosomiasis, the second agent is selected from pentamidine, suramin, melarsoprol, and effornithine. In another particular variation of the method, for treating Chagas disease, the second agent is selected from benznidazole, nifurtimox or Amphotericin b.

In another aspect, the invention is directed to a compound, salt, stereoisomer, or pharmaceutical composition thereof, according to any one of the above embodiments or variation, 50 for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a disease caused by the parasite Leishmania donovani, Leishmania infantum, Leishmania braziliensis, Leishmania panamensis, Leishmania guayanensis, Leishmania amazonensis, Leishmania soma cruzi, or Trypanosoma brucei. In one embodiment, the disease is visceral Leishmaniasis caused by Leishmania donovani. In another embodiment, the disease is Human African Trypanosomiasis caused by Trypanosoma brucei. In yet another embodiment, the disease caused by Trypanosoma cruzi.

In still another aspect, the present invention is directed to the use of the compound, or a salt, a stereoisomer, or a pharmaceutical composition thereof, according to the any one of 65 the above embodiments or variations in the manufacture of a medicament for treating, preventing, inhibiting, ameliorat24

ing, or eradicating the pathology and/or symptomology of a disease caused by Leishmania donovani, Leishmania infantum, Leishmania braziliensis, Leishmania panamensis, Leishmania guayanensis, Leishmania amazonensis, Leishmania mexicana, Leishmania tropica, Leishmania major, Trypanosoma cruzi, or Trypanosoma brucei. In one embodiment, the medicament is for treating visceral Leishmaniasis caused by Leishmania donovani. In another embodiment, the medicament is for treating Human African Trypanosomiasis caused by Trypanosoma brucei. In yet another embodiment, the medicament is for treating Chagas disease caused by Trypanosoma cruzi.

The medicament, in addition to the compound of the invention, may further include a second agent. The second agent may be other drugs that are known for treating Leishmaniasis, Human African Trypanosomiasis, or Chagas diseases. In one particular variation of the medicament, for treating Leishmaniasis, the second agent is selected from meglumine antimoniate, stibogluconate, Amphotericin, Miltefosine and paromomycin. In another particular variation of the medicament, for treating Human African Trypanosomiasis, the second agent is selected from pentamidine, suramin, melarsoprol, and effornithine. In yet another particular variation of the medicament, for treating Chagas disease, the second agent is selected from benznidazole, nifurtimox or Amphotericin b.

In another aspect, the invention is related to a kit which comprises a compound of any one of the above embodiments and variations, and optionally a second therapeutic agent. In one particular variation, the kit comprises the compound in a multiple dose form.

Enumerated Embodiments

Various enumerated embodiments of the invention are described herein. It will be recognized that features specified in each embodiment may be combined with other specified features to provide further embodiments of the present invention

In a first embodiment, the invention provides a compound of the formula (I), or a pharmaceutical acceptable salt, tautomer or stereoisomer thereof,

X is O or NR₄, wherein R₄ is selected from hydrogen, C₁₋₄alkyl, haloC₁₋₄alkyl, and —C(O)R₁₀, wherein R₁₀ is hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, amino, C₁₋₄alkylamino, C₃₋₆cycloalkyl and C₄₋₆heterocycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from hydroxyl, halo and C₁₋₄alkyl;

 L_1 is -C(O)— or $-S(O)_2$ —;

 R_1 is selected from nitro, C_{1-4} alkyl, C_{1-6} alkoxy, amino, C_{5-9} heteroaryl, C_{3-6} cycloalkyl and C_{4-6} heterocycloalkyl, each of which is optionally substituted by 1-2 substituent independently selected from halo, cyano, amino, C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-6} alkoxy, and C_{1-4} alkylcarbonyl; or —NHL $_1$ R $_1$ is nitro;

 R_3 is selected from hydrogen, halo, cyano, $C_{1\text{--}4}$ alkyl and halo $C_{1\text{--}4}$ alkyl;

 L_2 is selected from a bond, -C(O)— and $-S(O)_2$ —;

 R_2 is selected from hydrogen, $C_{1.6}$ alkyl, $C_{1.4}$ alkoxy, amino, $C_{3.6}$ cycloalkyl, $C_{4.6}$ heterocycloalkyl, and 5 $C_{5.6}$ heteroaryl; wherein

the C_{1-6} alkyl, C_{1-4} alkoxy, C_{3-6} cycloalkyl, and amino of R_2 are each optionally substituted by 1-2 substituents independently selected from halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, $-NR_{9a}R_{9b}$, C_{3-6} cycloalkyl, C_{5-6} heterocycloalkyl, phenyl and C_{5-6} heteroaryl, wherein R_{9a} is hydrogen or C_{1-4} alkyl and R_{9b} is selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkylcarbonyl and C_{1-4} alkoxycarbonyl, and the C_{5-6} heterocycloalkyl, phenyl or C_{5-6} heteroaryl is further optionally substituted by 1-2 substituents independently selected from hydroxyl, C_{1-4} alkyl and C_{1-4} alkoxycarbonyl;

the C_{5-6} heteroaryl of R_2 is optionally substituted with 1-2 substituents selected from hydroxy, C_{1-4} alkyl, and C_{1-4} alkoxycarbonyl;

the C_{3-6} cycloalkyl or C_{4-6} heterocycloalkyl of R_2 are each independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-4} alkoxyl C_{1-4} alkyl, aminocarbonyl, C_{1-4} alkoxycarbonyl, and C_{1-4} alkoxycarbonylamino C_{1-4} alkyl;

R₅ is hydrogen or C₁₋₄alkyl;

or R_2 and R_5 together with L_2 and N to which R_2 and R_5 , respectively, attached are taken together to form a hetero C_{5-6} cycloalkyl or a hetero C_{5-6} cycloalkenyl, each of which is optionally substituted by 1 to 3 substituents independently selected from oxo, C_{1-4} alkyl, — $(CH_2)_{1-4}$ OH, — $(CH_2)_{1-4}$ NR $_a$ R $_b$, wherein R_a and R_b are each independently hydrogen, C_{1-4} alkyl or C_{3-6} cycloalkyl;

or $-N(R_5)L_2R_2$ is nitro or $-N=CHN(CH_3)_2$.

Embodiment 2

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 1, wherein X is O.

Embodiment 3

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 1, X is NR₄, wherein R₄ is hydrogen, $C_{1.4}$ alkyl, halo $C_{1.4}$ alkyl, or $C(O)R_{10}$, where R_{10} is $C_{1.4}$ alkoxy or $C_{1.4}$ alkylamino.

Embodiment 4

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 1, wherein X is NR_4 and R_4 is $C_{1.4}$ alkyl.

Embodiment 5

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 1, wherein X is NR_4 and R_4 is 60 hydrogen, ethyl, — $C(O)OCH(CH_3)(CH_2CH_3)$, and — $C(O)OCH(CH_3)_2$.

Embodiment 6

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 1, wherein X is NH.

26

Embodiment 7

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 6, wherein L_1 is *—C(O)—.

Embodiment 8

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 6, wherein L_1 is $-S(O)_2$.

Embodiment 9

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 8, wherein $R_{\rm 1}$ is selected from $C_{1.4}$ alkyl, $C_{1.6}$ alkoxy, amino, $C_{5.9}$ heteroaryl, $C_{3.6}$ cycloalkyl and $C_{4.6}$ heterocycloalkyl, each is optionally substituted by 1-2 substituent independently selected from hydroxyl, halo, cyano, amino, $C_{1.4}$ alkyl, halo $C_{1.4}$ alkyl, $C_{1.6}$ alkoxy, $C_{1.4}$ alkylcarbonyl, phenyl and $C_{5.6}$ heteroaryl.

Embodiment 10

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 8, wherein $R_{\rm 1}$ is selected from $C_{\rm 1-6}$ alkoxy and $C_{\rm 1-6}$ alkylamino, wherein the $C_{\rm 1-6}$ alkoxy and $C_{\rm 1-6}$ alkylamino are each optionally substituted by 1-2 substituents independently selected from $C_{\rm 1-4}$ alkyl and $C_{\rm 1-4}$ alkoxy.

Embodiment 11

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 8, wherein R₁ is selected from —CH₃, —(CH₁₂)₁₋₃CH₃, —CH(CH₃)₂, —CH₂CH(CH₃)₂, —(CH₂)₂F, —(CH₂)₂OCH₃, —N(CH₃)₂, —N(CH₃) CH₂CH₃, —N(CH₂CH₃)₂, —N(CH₃)OCH₃, —OCH₂CH₃, —O(CH₂)₃CH₃, —OCH(CH₃)₂, —OCH₂CH(CH₃)₂, —O(CH₂)₂OCH₃.

Embodiment 12

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 8, wherein R₁ is selected from —N(CH₃)CH₂CH₃, —N(CH₃)₂, —N(CH₂CH₃)₂, —N(CH₃) OCH₃, —OCH₂CH₃, —OCH(CH₃)₂, —O(CH₂)₂OCH₃.

Embodiment 13

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 8, wherein $R_{\rm 1}$ is selected from $C_{\rm 5-9}$ heteroaryl, $C_{\rm 4-6}$ heterocycloalkyl, and $C_{\rm 3-6}$ cycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, $C_{\rm 1-4}$ alkyl and $C_{\rm 1-4}$ alkoxy.

Embodiment 14

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 8, wherein R_1 is selected from pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, furanyl, thiophenyl, thiazolyl, phenyl, pyrazinyl, cyclopropyl, cyclopentyl, pyrrolidinyl, and indolyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, $C_{1\text{--}4}$ alkyl, halo $C_{1\text{--}4}$ alkyl and $C_{1\text{--}4}$ alkylcarbonyl.

Embodiment 15

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 6, wherein L_1 - R_1 is selected

65

 $\begin{array}{lll} \text{from} & -\text{C(O)CH(CH_3)}_2, & -\text{C(O)(CH_2)}_2\text{F}, & -\text{C(O)CH(NH_2)} \\ (\text{CH}_3), & -\text{C(O)N(CH_3)}_2, & -\text{C(O)N(CH_3)CH}_2\text{CH}_3, & -\text{C(O)N} \\ (\text{CH}_2\text{CH}_3)_2, & -\text{C(O)N(CH}_3\text{OCH}_3, & -\text{C(O)OCH}_2\text{CH}_3, \\ -\text{C(O)OCH(CH}_3)_2, & -\text{C(O)OCH(CH}_3\text{)(CH}_2\text{CH}_3), & -\text{C(O)} \\ O(\text{CH}_2\text{)CH(CH}_3)_2, & \text{C(O)O(CH}_2\text{)}_2\text{OCH}_3. & -\text{S(O)}_2\text{CH}_3, & \text{and} & 5 \\ -\text{S(O)}_2\text{CH(CH}_3)_2. & \end{array}$

Embodiment 16

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 6, wherein -L₁-R₁ is selected from —NHC(O)N(CH₃)CH₂CH₃, —NHC(O)N(CH₃) OCH₃, —NHC(O)N(CH₃)₂, —NHC(O)N(CH₂CH₃)₂, —NHC(O)OCH₂CH₃, —NHC(O)OCH(CH₃)₂, and —NHC (O)O(CH₂)₂OCH₃.

Embodiment 17

A compound, or a salt, tautomer or stereoisomer thereof, $\,$ 20 according to Embodiments 1 to 6, wherein -L $_1$ -R $_1$ is selected from

-continued

45

Embodiment 18

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 6, wherein L₁-R₁ is selected from $-C(O)OCH_2CH_3$, $-C(O)O(CH_2)_2OCH_3$,

$$\bigcap_{N} *, \quad \bigcap_{N} * \text{ and } \bigcap_{N} *.$$

Embodiment 19

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 1, wherein NHL₁R₁ is nitro.

Embodiment 20

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 19, wherein R₃ is selected from hydrogen, halo, methyl, or trifluoromethyl.

Embodiment 21

A compound, or a salt, tautomer or stereoisomer thereof, fluoro.

Embodiment 22

A compound, or a salt, tautomer or stereoisomer thereof, 65 according to Embodiments 1 to 19, R3 is methyl or trifluoromethyl.

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 19, wherein R₃ is hydrogen

Embodiment 24

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 23, wherein R₅ is hydrogen.

Embodiment 25

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 23, wherein R₅ is C_{1.4}alkyl.

Embodiment 26

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 24, wherein L_2 is a bond.

Embodiment 27

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 24, wherein L_2 is -C(O).

Embodiment 28

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 24, wherein L_2 is $-S(O)_2$.

Embodiment 29

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, wherein R2 is selected 35 from hydrogen, $\mathrm{C}_{1\text{--}6} alkyl,~\mathrm{C}_{1\text{--}4} alkoxy,~\mathrm{C}_{3\text{--}6} cycloalkoxy,$ amino, C₃₋₆cycloalkyl, C₅₋₆heterocycloalkyl, and C₅₋₆heteroaryl, wherein

the C_{1-4} alkyl, C_{1-4} alkoxy, C_{3-6} cycloalkoxy, and amino are each optionally substituted by 1-2 substituents independently selected from halo, hydroxy, C₁₋₄alkyl, halo C_{1-4} alkyl, C_{1-4} alkoxy, $-NR_{9a}R_{9b}$, C_{5-6} heterocycloalkyl, phenyl and C_{5-6} heteroaryl, wherein R_{9a} is hydrogen or C₁₋₄alkyl, and R_{9b} is selected from hydrogen, C₁₋₄alkyl, and C₁₋₄alkoxycarbonyl; and the C_{5-6} heterocycloalkyl, phenyl or C_{5-6} heteroaryl is each further optionally substituted by 1-2 substituents independently selected from halo, hydroxyl, C₁₋₄alkyl and C₁₋₄alkoxycarbonyl;

the C₅₋₆heteroaryl is optionally substituted with 1 to 2 C₁₋₄alkyl;

the C₃₋₆cycloalkyl or C₄₋₆heterocycloalkyl are each independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, C₁₋₄alkyl, halo C_{1-4} alkyl, — CH_2OCH_3 , — $C(O)NH_2$, C_{1-4} alkoxycarbonyl and C_{1-4} alkoxycarbonylamino C_{1-4} alkyl.

Embodiment 30

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 19, wherein R₃ is chloro or 60 according to Embodiments 1 to 28, wherein R₂ is hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy, amino, C_{3-6} cycloalkyloxy, C_{3-6} cycloalkyl, C₅₋₆heterocycloalkyl, and C₅₋₆heteroaryl, wherein

the C₁₋₄alkyl, C₁₋₄alkoxy, C₃₋₆cycloalkyloxy, and amino are each optionally substituted by 1-2 substituents independently selected from halo, hydroxyl, C1-4alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxy, —NH₂, C₁₋₄alkylamino, —NHC(O)OC(CH₃)₃, pyrrolidinyl, piperidinyl, morpholinyl, phenyl and pyridinyl, wherein the pyrrolidinyl, piperidinyl, morpholinyl, phenyl or pyridinyl is each optionally substituted by halo, hydroxy, C_{1-4} alkyl, or $-C(O)OC(CH_3)_3)$;

the C_{5-6} heteroaryl is optionally substituted with 1-2 substituents independently selected from hydroxyl and C_{1-4} alkyl;

the C_{3-6} cycloalkyl or C_{4-6} heterocycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, methyl, trifluoromethyl, — CH_2OCH_3 , — $CH_2NHC(O)(O)C(CH_3)_3$, — $C(O)(O)C(CH_3)_3$, and — $C(O)NH_2$

Embodiment 31

A compound, or a salt, tautomer or stereoisomer thereof, 15 according to Embodiments 1 to 28, wherein R₂ is selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobu- $-(CH_2)_2$ $-NHC(O)OC(CH_3)_3$, —(CH₂)-piperidin-4-yl, 20 -CH₂-2-hydroxypiperidin-3-yl, —(CH₂)-pyrrolidin-3-yl, - CH_2 -(1-tert-butoxycarbonyl)pyrrolidin-3-yl, — $(CH_2)_{2-3}$ morpholinyl, —(CH₂)₁₋₂-4-fluorophenyl, —(CH₂)-pyridin-3-yl, -(CH₂)₂OH, -C(CH₃)₂CH₂OH, -CH(OH)CH₂OH, -OCH₂CH₃, ₂₅ -(CH₂)₂OCH₃, -OCH₃, — (CH₂)₂CH₂CH₃, — OCH(CH₃)₂, 1-methylcycopropoxy, — O(CH₂)₂F, — OC(CH₃)₂NH₂, — OCH₂OCH₃, — OCH₂C (CH₃)₂NH₂, — O(CH₂)₂— NHC(O)OC(CH₃)₃, — OCH₂C $(CH_3)_2$ —NHC(O) $OC(CH_3)_3$, —NH2, $-NH(CH_{\overline{3}}),$ —NHCH(CH₃)₂, − —NH-pyridin-3-yl $-N(CH_3)_2$, $-N(CH_3)CH(CH_3)_2$, and

Embodiment 32

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, R_2 is C_{5-6} heteroaryl ³⁵ optionally substituted with 1-2 substituents independently selected from hydroxyl and C_{1-4} alkyl.

Embodiment 33

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to $28,\,R_2$ is selected from

each of which is optionally substituted with 1-2 substituents independently selected from methyl and hydroxyl.

Embodiment 34

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, $\rm R_2$ is $\rm C_{3-6} cycloalkyl$ or $\rm C_{4-6} heterocycloalkyl,$ each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, $\rm C_{1-4} alkyl,$ halo $\rm C_{1-4} alkyl,$ $\rm 60$ $\rm C_{1-4} alkoxy,$ aminocarbonyl, $\rm C_{1-4} alkoxycarbonylamino C_{1-4}$ alkyl, and $\rm C_{1-4} alkoxycarbonyl.$

Embodiment 35

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, R_2 is selected from cyclo-

propyl, cyclobutyl, azetidin-3-yl, pyrrolidin-1-yl, pyrrolidin-3-yl, piperidin-4-yl, and oxetan-3-yl, each of which is independently optionally substituted with 1-2 substituents independently selected from fluoro, cyano, hydroxy, methyl, trifluoromethyl, —CH_2NHC(O)OC(CH_3)_3, —C(O)NH_2, —CH_2—O—(CH_3), and —C(O)OC(CH_3)_3.

Embodiment 36

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, wherein R_2 is phenyl C_{1-4} alkyl or C_{5-6} heteroaryl C_{1-4} alkyl, wherein the phenyl or C_{5-6} heteroaryl is optionally substituted by 1-2 substituents selected from halo and C_{1-4} alkyl.

Embodiment 37

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, wherein R_2 is — $(CH_2)_{1-2}$ -4-fluorophenyl.

Embodiment 38

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, wherein R_2 is C_{1-4} alkyl or C_{1-4} alkylamino.

Embodiment 39

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 28, wherein R_2 is methyl, isopropyl, methylamino or dimethylamino.

Embodiment 40

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 25, wherein -L2-R2 is selected from H, methyl, — $(CH_2)_2NH_2$, — $(CH_2)_3NH_2$, — CH_2C $(CH_3)_2NH_2$, — CH_2 -piperidin-4-yl, — CH_2 -2-hydroxypiperidin-3-yl, — $(CH_2)_{1-2}$ -4-fluorophenyl. —C(O)H, —C(O)-5-methylthiazol-2-yl, —C(O)-2,4-dimethylthiazol-5-yl, —C(O)-2,2-difluorocyclopropyl, —C(O)-cyclopropyl, —C(O)-1-hydroxycyclopropyl, —C(O)-1-cyanocyclopropyl, —C(O)-1-methoxymethylcyclopropyl, —C(O)-1-aminocarbonylcyclopropyl, —C(O)-1-((tert-butoxycarbonyl) aminomethyl)cyclopropyl, —C(O)-cyclobutyl, —C(O)-3fluorocyclobutyl, —C(O)-1-fluorocyclobutyl, —C(O)-3,3difluorocyclobutyl, —C(O)-1-trifluotomethylcyclobutyl, -C(O)-3,3-dimethylcyclobutyl, --C(O)-azetidin-3-yl, -C(O)-3-methyloxetan-3-yl, —C(O)-pyrrolidin-1-yl, —C(O)—N-methylpiperidin-4-yl, —C(O)-piperidin-4-yl, $-C(O)CH(CH_3)_2$, $-C(O)CH_2CH(CH_3)_2$, $\begin{array}{c} {\rm CH_2NH_2, -C(O)(CH_2)_2NH_2, -C(O)CH_2N(CH_3)_2, -C(O)} \\ {\rm (CH_2)_2 -NHC(O)OC(CH_3)_3, -C(O)(CH_2)_2OH, -C(O)} \end{array}$ $(CH_2)_2OCH_3$, $--C(O)CH(OH)CH_2OH$, *-- $-C(O)C(CH_3)_2$ CH_2OH , $--C(O)(CH_2)_{2-3}$ -morpholinyl, $--C(O)(CH_2)$ -pyr-55 rolidin-3-yl, —C(O)(CH₂)-1-(tert-butoxycarbonyl)pyrrolidin-3-yl, $-C(O)(CH_2)$ -pyridin-3-yl, $-C(O)NHCH(CH_3)_2$, $-C(O)N(CH_3)CH_2CH_3$, $--C(O)OCH(CH_3)_2$, OCH_3 , $-C(O)OCH_2CH_3$, $-C(O)O(CH_2)_2F$, -C(O)O(CH₂)₂-NHC(O)OC(CH₃)₃,-C(O)OCH₂C(CH₃)₂-NHC(O)OC(CH₃)₃, -C(O)OCH₂C(CH₃)₂NH₂, -C(O)O-1-methycyclopropyl, -SO₂CH₃, -SO₂CH(CH₃)₂, SO₂N $(CH_3)_2$, and $-SO_2NH(CH_3)$.

Embodiment 41

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 25, wherein $-L_2-R_2$ is selected

from —C(O)CH(CH₃)₂, —C(O)-cyclopropyl, —C(O)OCH (CH₃)₂, —C(O)OCH₃, —C(O)N(CH₃)₂, —C(O)O-cyclopropyl, —C(O)-cyclobutyl, wherein the cyclopropyl and cyclobutyl are each independently optionally substituted by a substituent independently selected from cyano, halo and 5 C₁₋₄alkyl.

Embodiment 42

A compound, or a salt, tautomer or stereoisomer thereof, according to

Embodiments 1 to 25, wherein -L₂-R₂ is selected from —C(O)OCH(CH₃)₂, —C(O)OCH₂CH₃, —C(O)OCH₃,

Embodiment 43

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiments 1 to 25, wherein $-L_2-R_2$ is —C(O) OCH(CH₃)₂.

Embodiment 44

A compound, or a salt, tautomer or stereoisomer thereof, according to

Embodiments 1 to 23, wherein R_5 and R_2 with N and L_2 to 65 which they attached are taken to form the C_{5-6} heterocycloalkyl or C_{5-6} heterocycloalkenyl selected from

10 wherein $C_{1.4}$ alkyl, $-(CH_2)_{1.4}$ OH, $-(CH_2)_{1.4}NR_aR_b$, wherein R_a and R_b are each independently hydrogen, $C_{1.4}$ alkyl or $C_{3.6}$ cycloalkyl.

Embodiment 45

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 1, selected from:

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}-5-methyl-1,3-thiazole-2-carboxamide;

20 propan-2-yl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1Himidazo[4,5-b]pyridin-6-yl}carbamate;

ethyl N-{2-[3-(5-fluorofuran-2-amido)phenyl]-1H-imidazo [4,5-b]pyridin-6-yl}carbamate;

propan-2-yl N-[2-(2-chloro-5-{[(propan-2-yloxy)carbonyl] amino}phenyl)-1H-imidazo[4,5-b]pyridin-6-yl]carbamate:

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}-2,4-dimethyl-1,3-thiazole-5-carboxamide:

30 ethyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo [4,5-b]pyridin-6-yl}carbamate;

propan-2-yl 2-[2-chloro-5-(furan-2-amido)phenyl]-6-{[(propan-2-yloxy)carbonyl]amino}-1H-imidazo[4,5-b] pyridine-1-carboxylate;

35 N-(4-chloro-3-{6-nitro-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

methyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-{4-chloro-3-[6-(2-methylpropanamido)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(methylamino)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}pyrrolidine-1-carboxamide;

45 N-{4-chloro-3-[6-(dimethylamino)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(3-methylbutanamido)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

tert-butyl N-{1-[({2-|2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)oxy]-2-meth-ylpropan-2-yl}carbamate;

tert-butyl N-{2-[({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)oxy] ethyl}carbamate;

A compound, or a salt, tautomer or stereoisomer thereof, nyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-{4-chloro-3-[6-(2,3-dihydroxypropanamido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(3-methoxypropanamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-(3-{6-amino-1H-imidazo[4,5-b]pyridin-2-yl}-4-chlorophenyl)-furan-2-carboxamide;

N-[4-chloro-3-(6-{[(pyridin-3-yl)carbamoyl]amino}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

N-{4-chloro-3-[6-(3-hydroxy-2,2-dimethylpropanamido)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

35

- 2-amino-2-methylpropyl N-{2-[2-chloro-5-(furan-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;
- N-[4-chloro-3-(6-{[(propan-2-yl)carbamoyl]amino}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;
- N-{4-chloro-3-[6-(3-hydroxypropanamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;
- N-{3-[6-(2-amino-2-methylpropanamido)-1H-imidazo[4,5b|pyridin-2-yl]-4-chlorophenyl}furan-2-carboxamide;
- N-(4-chloro-3-{6-[(piperidin-4-ylmethyl)amino]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;
- tert-butyl (3R)-3-[({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoylmethyl]pyrrolidine-1-carboxylate;
- $N-(3-\{6-amino-1H-imidazo[4,5-b]pyridin-2-yl\}-4-chlo$ rophenyl)-5-methylfuran-2-carboxamide;
- N-[4-chloro-3-(6-{[(2-hydroxypyridin-3-ylmethyl]amino}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;
- N-(3-{6-[(2-amino-2-methylpropyl)amino]-1H-imidazo[4, 5-b|pvridin-2-v1}-4-chlorophenvl)furan-2-carboxamide;
- N-[4-chloro-3-(6-{2-[(3S)-pyrrolidin-3-yl]acetamido}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;
- N-{3-[6-(2-aminoacetamido)-1H-imidazo[4,5-b]pyridin-2yl]-4-chlorophenyl}furan-2-carboxamide;
- N-[4-chloro-3-(6-{2-[(3R)-pyrrolidin-3-yl]acetamido}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;
- N-(4-chloro-3-{6-[(1-hydroxycyclopropane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-
- $N-\{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-30]$ b|pyridin-6-yl}-1-methylpiperidine-4-carboxamide;
- N-[4-chloro-3-(6-{[1-(trifluoromethyl)cyclobutane]amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxa-
- N-(4-chloro-3-{6-[(3-fluorocyclobutane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;
- propan-2-yl N-{2-[2-chloro-5-(5-methoxyfuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;
- N-(4-chloro-3-{6-[2-(dimethylamino)acetamido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;
- N-(4-chloro-3-{6-[(1-cyanocyclopropane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;
- N-[4-chloro-3-(6-{[1-(methoxymethyl)cyclopropane] amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2carboxamide:
- N-{4-chloro-3-[6-(3-methyloxetane-3-amido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;
- N-(4-chloro-3-{6-[(2,2-difluorocyclopropane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-
- N-(4-chloro-3-{6-cyclopropaneamido-1H-imidazo[4,5-b] pyridin-2-yl}phenyl)furan-2-carboxamide;
- N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5b]pyridin-6-yl}piperidine-4-carboxamide;
- nyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;
- propan-2-yl N-{2-[2-chloro-5-(5-cyanofuran-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;
- 1-methylcyclopropyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;
- N-(4-chloro-3-{6-[(E)-[(dimethylamino)methylidene] amino]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2carboxamide:
- N-(4-chloro-3-{6-[(dimethylsulfamoyl)amino]-1H-imidazo [4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;
- N-(4-chloro-3-{6-[(methylsulfamoyl)amino]-1H-imidazo [4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

36

- 2-fluoroethyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1Himidazo[4,5-b]pyridin-6-yl}carbamate;
- propan-2-yl N-(2-{2-chloro-5-[(pyrrolidin-1-yl)carbonylamino|phenyl}-1H-imidazo[4,5-b|pyridin-6-yl)carbam-
- N-(4-chloro-3-{6-cyclobutaneamido-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;
- N-(4-chloro-3-{6-[(3,3-dimethylcyclobutane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-
- N-(4-chloro-3-{6-[(3,3-difluorocyclobutane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-
- $_{15}$ N-[2-(2-chloro-5-methanesulfonamidophenyl)-1H-imidazo [4,5-b]pyridin-6-yl]methanesulfonamide;
 - N-{2-[2-chloro-5-(propane-2-sulfonamido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}propane-2-sulfonamide;
 - N-{4-chloro-3-[6-(propane-2-sulfonamido)-1H-imidazo[4, 5-b|pyridin-2-yl|phenyl}-5-cyanofuran-2-carboxamide;
 - ethyl N-{2-[2-chloro-5-(5-cyanofuran-2-amido)phenyl]-1Himidazo[4,5-b]pyridin-6-yl}carbamate;
 - N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5b]pyridin-6-yl}azetidine-3-carboxamide;
- 25 tert-butyl N-{[1-({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)cyclopropyl] methyl\carbamate;
 - 1-N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}cyclopropane-1,1-dicarboxamide;
 - N-(4-chloro-3-{6-cyclopropaneamido-1H-imidazo[4,5-b] pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide:
 - N-(4-chloro-3-{6-[4-(morpholin-4-yl)butanamido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide:
 - tert-butvl $N-\{[1-(\{2-[2-chloro-5-(5-fluorofuran-2-amido)\}$ phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)cyclopropyl]methyl}carbamate;
 - N-[2-({2-[2-chloro-5-(5-fluorofuran-2-amido) tert-butyl phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl) ethyllcarbamate:
 - N-(3-{6-[(3-aminopropyl)amino]-1H-imidazo[4,5-b]pyridin-2-yl}-4-chlorophenyl)-5-fluorofuran-2-carboxamide;
 - N-(4-chloro-3-{6-[(1-cyanocyclopropane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide:
 - N-[4-chloro-3-(6-{[1-(trifluoromethyl)cyclobutanelamido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]-5-fluorofuran-2carboxamide;
- 50 N-(4-chloro-3-{6-[3-(morpholin-4-yl)propanamido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-car-
 - N-{3-[6-(3-aminopropanamido)-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl}-5-fluorofuran-2-carboxamide;
- propan-2-yl N-{2-[2-chloro-5-(5-fluorofuran-2-amido)phe-55 N-(4-chloro-3-{6-formamido-1H-imidazo[4,5-b]pyridin-2yl}phenyl)-5-fluorofuran-2-carboxamide;
 - propan-2-yl N-(2-{2-chloro-5-[(pyrrolidin-1-yl)carbonylamino|phenyl}-[1,3]oxazolo[4,5-b]pyridin-6-yl)carbam-
 - 60 propan-2-yl N-(2-{2-chloro-5-[(furan-2-yl)carbonylamino] phenyl \{-[1,3]\, oxazolo[4,5-b]\, pyridin-6-yl)\, carbamate;
 - 5-fluoro-N-{3-[6-(propane-2-sulfonamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;
 - propan-2-yl N-{2-[3-(5-fluorofuran-2-amido)phenyl]-1Himidazo[4,5-b]pyridin-6-yl}carbamate; and
 - -(3-{6-amino-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5fluorofuran-2-carboxamide.

37

Embodiment 46

A pharmaceutical composition comprising a compound of any one of Embodiments 1 to 45 as an active ingredient and at least one excipient.

Embodiment 47

A compound, or a salt, tautomer or stereoisomer thereof, according to any one of Embodiments 1 to 45 or a pharmaceutical composition according to Embodiment 46 for use as a medicament.

Embodiment 48

A compound, or a salt, tautomer or stereoisomer thereof, according to any one of Embodiments 1 to 45 or a pharmaceutical composition according to Embodiment 46 for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease, wherein the disease is selected from Leishmaniasis, Human African Trypanosomiasis and Chagas disease, and wherein the compound is optionally used in combination with a second agent.

Embodiment 49

A compound for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 48, wherein the disease is Leishmaniasis.

Embodiment 50

A compound for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 48, wherein the disease is visceral Leishmaniasis

Embodiment 51

A compound for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 48, wherein the disease is Human African Trypanosomiasis.

Embodiment 52

A compound for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 48, wherein the disease is Chagas disease.

Embodiment 53

A compound, or a salt, tautomer or stereoisomer thereof, according to Embodiment 48 for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Leishmaniasis, wherein the second agent is selected from stibogluconate, meglumine antimoniate, 60 Amphotericin, Miltefosine and paromomycin.

Embodiment 54

A compound, or a salt, tautomer or stereoisomer thereof, 65 according to Embodiment 48 for treating, preventing, inhibiting, ameliorating, or eradicating Human African Trypano-

38

somiasis, wherein the second agent is selected from pentamidine, suramin, melarsoprol, effornithine, and nifurtimox.

Embodiment 55

A compound, or a salt, tautomer or stereoisomer thereof, according to any one of Embodiment 48 for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Chagas disease, wherein the second agent is selected from benznidazole, nifurtimox and Amphotericin.

Embodiment 56

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a disease caused by a parasite, comprising administering to a subject a therapeutically effective amount of a compound according to any one of Embodiments 1 to 45 or a composition according to Embodiment 46, wherein the disease is selected from Leishmaniasis, Human African Trypanosomiasis, and Chagas disease, and wherein the administering is optionally in combination with a second agent.

Embodiment 57

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 56, wherein the disease is Leishmaniasis.

Embodiment 58

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 56, wherein the disease is visceral Leishmaniasis

Embodiment 59

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 56, wherein the disease is Human African Trypanosomiasis.

Embodiment 60

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease according to Embodiment 56, wherein the disease is Chagas disease.

Embodiment 61

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Leishmaniasis according to Embodiment 56, wherein the second agent selected from stibogluconate, meglumine antimoniate, Amphotericin, Miltefosine and paromomycin.

Embodiment 62

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Human African Trypanosomiasis according to Embodiment

56, wherein the second agent selected from pentamidine, suramin, melarsoprol, eflornithine, and nifurtimox.

Embodiment 63

A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Chagas disease according to Embodiment 56, wherein the second agent selected from benznidazole, nifurtimox and Amphotericin.

Embodiment 64

Use of a compound according to any one of Embodiments 1 to 45, for the manufacture of a medicament for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease, wherein the disease is selected from Leishmaniasis, Human African Trypanosomiasis and Chagas disease.

Embodiment 65

A use of a compound according to Embodiment 64 for the manufacture of a medicament for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease, wherein the parasitic disease is Leishmaniasis.

Embodiment 66

A use of a compound according to Embodiment 65 for the manufacture of a medicament for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease, wherein the parasitic disease is visceral Leishmaniasis.

Embodiment 67

A use of a compound according to Embodiment 65 for the manufacture of a medicament for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease, wherein the parasitic disease is Human African Trypanosomiasis.

Embodiment 68

A use of a compound according to Embodiment 65 for the manufacture of a medicament for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a parasitic disease, wherein the parasitic disease 50 is Chagas disease.

As used herein, the term "an optical isomer" or "a stereoisomer" refers to any of the various stereo isomeric configurations which may exist for a given compound of the present invention and includes geometric isomers. It is understood 55 that a substituent may be attached at a chiral center of a carbon atom. The term "chiral" refers to molecules which have the property of non-superimposability on their mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner. Therefore, the 60 invention includes enantiomers, diastereomers or racemates of the compound. "Enantiomers" are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a "racemic" mixture. The term is used to designate a racemic mixture where appropriate. "Diastereoisomers" are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images

40

of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R-S system. When a compound is a pure enantiomer the stereochemistry at each chiral carbon may be specified by either R or S. Resolved compounds whose absolute configuration is unknown can be designated (+) or (-) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line. Certain compounds described herein contain one or more asymmetric centers or axes and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-.

Depending on the choice of the starting materials and procedures, the compounds can be present in the form of one of the possible isomers or as mixtures thereof, for example as pure optical isomers, or as isomer mixtures, such as racemates and diastereoisomer mixtures, depending on the number of asymmetric carbon atoms. The present invention is meant to include all such possible isomers, including racemic mixtures, diasteriomeric mixtures and optically pure forms. Optically active (R)- and (S)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. If the compound contains a double bond, the substituent may be E or Z configuration. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis- or trans-configuration. All tautomeric forms are also intended to be included.

As used herein, the terms "salt" or "salts" refers to an acid addition or base addition salt of a compound of the invention. "Salts" include in particular "pharmaceutical acceptable salts". The term "pharmaceutically acceptable salts" refers to salts that retain the biological effectiveness and properties of the compounds of this invention and, which typically are not biologically or otherwise undesirable. In many cases, the compounds of the present invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.

Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids, e.g., acetate, aspartate, benzoate, besylate, bromide/hydrobromide, bicarbonate/carbonate, bisulfate/sulfate, camphorsulfonate, chloride/hydrochloride, chlortheophyllonate, citrate, ethandisulfonate, fumarate, gluceptate, gluconate, glucuronate, hippurate, hydroiodide/iodide, isethionate, lactate, lactobionate, laurylsulfate, malate, maleate, malonate, mandelate, mesylate, methylsulphate, naphthoate, napsylate, nicotinate, nitrate, octadecanoate, oleate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, polygalacturonate, propionate, stearate, succinate, sulfosalicylate, tartrate, tosylate and trifluoroacetate salts.

Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.

Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, sulfosalicylic acid, and the like. Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases.

Inorganic bases from which salts can be derived include, for example, ammonium salts and metals from columns I to XII of the periodic table. In certain embodiments, the salts are derived from sodium, potassium, ammonium, calcium, mag-

nesium, iron, silver, zinc, and copper; particularly suitable salts include ammonium, potassium, sodium, calcium and magnesium salts.

Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like. Certain organic amines include isopropylamine, benzathine, cholinate, diethanolamine, diethylamine, lysine, meglumine, piperazine and tromethamine.

The pharmaceutically acceptable salts of the present invention can be synthesized from a basic or acidic moiety, by conventional chemical methods. Generally, such salts can be prepared by reacting free acid forms of these compounds with a stoichiometric amount of the appropriate base (such as Na, 15 Ca, Mg, or K hydroxide, carbonate, bicarbonate or the like), or by reacting free base forms of these compounds with a stoichiometric amount of the appropriate acid. Such reactions are typically carried out in water or in an organic solvent, or in a mixture of the two. Generally, use of non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile is desirable, where practicable. Lists of additional suitable salts can be found, e.g., in "Remington's Pharmaceutical Sciences", 20th ed., Mack Publishing Company, Easton, Pa., (1985); and in "Handbook of Pharmaceutical Salts Properties, Selection, and Use" by Stahl and Wermuth (Wiley-VCH, 25 Weinheim, Germany, 2002).

Any formula given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds. Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more 30 atoms are replaced by an atom having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as ²H, ³H, ¹¹C, ¹³C, ¹⁴C, ¹⁵N, ¹⁸F ³¹F, ³²F, ₃₅ ³⁵S, ³⁶Cl, ¹²⁵I respectively. The invention includes various isotopically labeled compounds as defined herein, for example those into which radioactive isotopes, such as ³H and ¹⁴C, or those into which non-radioactive isotopes, such as ²H and ¹³C are present. Such isotopically labelled compounds are useful in metabolic studies (with ¹⁴C), reaction kinetic studies (with, for example ²H or ³H), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients. In particular, an ¹⁸F or ⁴⁵ labeled compound may be particularly desirable for PET or SPECT studies. Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Prepara- 50 tions using an appropriate isotopically-labeled reagents in place of the non-labeled reagent previously employed.

Further, substitution with heavier isotopes, particularly deuterium (i.e., ²H or D) may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements or an improvement in therapeutic index. It is understood that deuterium in this context is regarded as a substituent of a compound of the formula (I). The concentration of such a heavier isotope, specifically deuterium, may be defined by the isotopic enrichment factor. The term "isotopic enrichment factor" as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope. If a substituent in a compound of this invention is denoted deuterium, such compound has an isotopic enrichment factor for each designated deuterium atom of at least 65 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorpora42

tion), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).

Pharmaceutically acceptable solvates in accordance with the invention include those wherein the solvent of crystallization may be isotopically substituted, e.g. D₂O, d₆-acetone, d₋-DMSO.

Compounds of the invention, i.e. compounds of formula (I) that contain groups capable of acting as donors and/or acceptors for hydrogen bonds may be capable of forming co-crystals with suitable co-crystal formers. These co-crystals may be prepared from compounds of formula (I) by known co-crystal forming procedures. Such procedures include grinding, heating, co-subliming, co-melting, or contacting in solution compounds of formula (I) with the co-crystal former under crystallization conditions and isolating co-crystals thereby formed. Suitable co-crystal formers include those described in WO 2004/078163. Hence the invention further provides co-crystals comprising a compound of formula (I).

As used herein, the term "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, surfactants, antioxidants, preservatives (e.g., antibacterial agents, antifungal agents), isotonic agents, absorption delaying agents, salts, preservatives, drug stabilizers, binders, excipients, disintegration agents, lubricants, sweetening agents, flavoring agents, dyes, and the like and combinations thereof, as would be known to those skilled in the art (see, for example, Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, pp. 1289-1329). Except insofar as any conventional carrier is incompatible with the active ingredient, its use in the therapeutic or pharmaceutical compositions is contemplated.

The term "a therapeutically effective amount" of a compound of the present invention refers to an amount of the compound of the present invention that will elicit the biological or medical response of a subject, for example, reduction or inhibition of an enzyme or a protein activity, or ameliorate symptoms, alleviate conditions, slow or delay disease progression, or prevent a disease, etc. In one non-limiting embodiment, the term "a therapeutically effective amount" refers to the amount of the compound of the present invention that, when administered to a subject, is effective to (1) at least partially alleviate, inhibit, prevent and/or ameliorate a condition, or a disorder or a disease (i) mediated by Plasdmodium or (ii) associated with Plasdmodium activity, or (iii) characterized by activity (normal or abnormal) of Plasdmodium or (2) reduce or inhibit the activity of Plasdmodium; or (3) reduce or inhibit the growth of Plasdmodium. In another non-limiting embodiment, the term "a therapeutically effective amount" refers to the amount of the compound of the present invention that, when administered to a cell, or a tissue, or a non-cellular biological material, or a medium, is effective to at least partially reducing or inhibiting the activity of Plasdmodium; or at least partially reducing or inhibiting the growth of Plasdmodium.

As used herein, the term "subject" refers to an animal. Typically the animal is a mammal. A subject also refers to for example, primates (e.g., humans, male or female), cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice, fish, birds and the like. In certain embodiments, the subject is a primate. In yet other embodiments, the subject is a human.

As used herein, the term "inhibit", "inhibition" or "inhibiting" refers to the reduction or suppression of a given condition, symptom, or disorder, or disease, or a significant decrease in the baseline activity of a biological activity or process.

As used herein, the term "treat", "treating" or "treatment" of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In another embodiment "treat", "treating" or "treatment" refers to alleviating or ameliorating at least one physical parameter including those which may not be discernible by the patient. In yet another embodiment, "treat", "treating" or "treatment" refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In yet another embodiment, "treat", "treating" or "treatment" refers to preventing or delaying the onset or development or progression of the disease or disorder.

As used herein, a subject is "in need of" a treatment if such subject would benefit biologically, medically or in quality of life from such treatment.

As used herein, the term "a," "an," "the" and similar terms used in the context of the present invention (especially in the context of the claims) are to be construed to cover both the singular and plural unless otherwise indicated herein or clearly contradicted by the context.

All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. "such as") provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed.

Any asymmetric atom (e.g., carbon or the like) of the compound(s) of the present invention can be present in racemic or enantiomerically enriched, for example the (R)-, (S)-or (R,S)-configuration. In certain embodiments, each asymmetric atom has at least 50% enantiomeric excess, at least 35 60% enantiomeric excess, at least 70% enantiomeric excess, at least 80% enantiomeric excess, at least 90% enantiomeric excess, at least 95% enantiomeric excess, or at least 99% enantiomeric excess in the (R)- or (S)-configuration. Substituents at atoms with unsaturated double bonds may, if possible, be present in cis-(Z)- or trans-(E)-form.

Accordingly, as used herein a compound of the present invention can be in the form of one of the possible isomers, rotamers, atropisomers, tautomers or mixtures thereof, for example, as substantially pure geometric (cis or trans) isomers, diastereomers, optical isomers (antipodes), racemates or mixtures thereof.

Any resulting mixtures of isomers can be separated on the basis of the physicochemical differences of the constituents, into the pure or substantially pure geometric or optical isomers, diastereomers, racemates, for example, by chromatography and/or fractional crystallization.

Any resulting racemates of final products or intermediates can be resolved into the optical antipodes by known methods, e.g., by separation of the diastereomeric salts thereof, obtained with an optically active acid or base, and liberating the optically active acidic or basic compound. In particular, a basic moiety may thus be employed to resolve the compounds of the present invention into their optical antipodes, e.g., by fractional crystallization of a salt formed with an optically active acid, e.g., tartaric acid, dibenzoyl tartaric acid, diacetyl tartaric acid, di-O,O'-p-toluoyl tartaric acid, mandelic acid, malic acid or camphor-10-sulfonic acid. Racemic products can also be resolved by chiral chromatography, e.g., high pressure liquid chromatography (HPLC) using a chiral adsorbent.

Furthermore, the compounds of the present invention, including their salts, can also be obtained in the form of their hydrates, or include other solvents used for their crystallization. The compounds of the present invention may inherently or by design form solvates with pharmaceutically acceptable solvents (including water); therefore, it is intended that the invention embrace both solvated and unsolvated forms. The term "solvate" refers to a molecular complex of a compound of the present invention (including pharmaceutically acceptable salts thereof) with one or more solvent molecules. Such solvent molecules are those commonly used in the pharmaceutical art, which are known to be innocuous to the recipient, e.g., water, ethanol, and the like. The term "hydrate" refers to the complex where the solvent molecule is water.

The compounds of the present invention, including salts, hydrates and solvates thereof, may inherently or by design form polymorphs.

General Processes for Preparing Compounds of the Invention

The present invention also includes processes for the preparation of compounds of the invention. In the reactions described, it can be necessary to protect reactive functional groups, for example hydroxy, amino, imino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Conventional protecting groups can be used in accordance with standard practice, for example, see T. W. Greene and P. G. M. Wuts in "Protective Groups in Organic Synthesis", John Wiley and Sons, 1991.

Typically, the compounds of formula (I) can be prepared according to Schemes 1A. 1B, 2 and 3 provided infra., where the variables: R_1 , R_2 , R_3 , and R_5 and others are as defined in the Summary of the Invention. The following reaction schemes are given to be illustrative, not limiting, descriptions of the synthesis of compounds of the invention. Detailed descriptions of the synthesis of compounds of the Invention are given in the Examples, infra.

Scheme 1A. Preparation of azabenzimidazoles compounds with a *—NH(CO) R_1 —linker.

NH₂

$$R_1 \qquad HO \qquad \qquad \begin{array}{c} I_{1} \text{ 1-a, CH}_{2}\text{Cl}_{2}, \text{SOCl}_{2} + 1 - b \\ \hline DIEA, THF, r.t. \\ \hline or \\ 2] \text{ HATU, DIEA, DMF} \\ A \qquad \qquad \\ I-c \qquad \qquad \\ I-c \qquad \qquad \\ I-c \qquad \qquad \\ I-c \qquad \qquad \\ \\ I-c$$

 R_x COCl, pyridine, or R_x OCOCl, pyridine, R_x SO₂Cl, pyridine or R_x CO₂H, HATU, DIEA, DMF, or R_x NCO, DMF, R_x NCOCl, DMF

DMF, or
$$K_x$$
NCOCI, DMF
 $L_2 =$ CO or SO_2 ;
 $R_2 =$ R_x , OR_x or NHR_x

The Azabenzimidazole analog having a *—NH(CO)R₁—(1g) can be synthesized according to Scheme 1A.

- a. Condensation of the acid (1a) with amino acid (1b) to form an amide either by acid chloride formation or direct coupling using a suitable peptide coupling agent such as HATU in presence of amine base such as Et₃N, DIEA (Hunig's base) at room temperature gives (1c);
- b. Condensation of 1c with 5-nitro-pyridine-2,3-diamine with PPA leads to formation of azabenzimidazole 1e.
- c. Reduction of nitro reduction to the corresponding amine using tin chloride and ethanol as solvent. This reduction can also be achieved by other metals such as Fe, HCl o zinc. Alternatively, this reduction can be carried out by

catalytic hydrogentation using Pd, Pt, or raney-Ni using hydrogen gas as atmosphere.

d. Coupling of the amine to form a amide either by using an acid chloride in pyridine as solvent or direct coupling of carboxylic acid using a suitable peptide coupling agent such as HATU in presence of amine base such as Et₃N, DIEA (Hunig's base). Carbamates can be formed either by reaction with R₂OCOCl or activated carbonates such as 4-nitrophenyl activated carbonates in the presence of base such as pyridine or DIEA. Sulfonamides are formed by the reaction of sulfonyl chloride with aniline in the presence of base such as pyridine. Urea's are formed by reaction of amine with isocyanate or carbamoyl chloride in DMF with or without base.

Scheme 1B. Preparation of azabenzimidazoles compounds with a * — $NH(L_1)R_1$ — linker.

-continued HN
$$L_1-R_1$$
 H_2N
 H_2N
 H_3
 H_4

 $R_{x}COCl, pyridine, or R_{x}OCOCl, pyridine, \\ R_{x}SO_{2}Cl, pyridine or R_{x}CO_{2}H, \\ HATU, DIEA, \\ DMF, or R_{x}NCO, DMF, R_{x}NCOCl, DMF \\ \hline L_{2} = \underbrace{\hspace{1cm}} CO \underbrace{\hspace{1cm}} or \underbrace{\hspace{1cm}} SO_{2} \underbrace{\hspace{1cm}}; \\ R_{2} = \underbrace{\hspace{1cm}} R_{x}, \underbrace{\hspace{1cm}} OR_{x} \ or \underbrace{\hspace{1cm}} NHR_{x} \\ D$

$$R_2$$
 L_1
 R_1
 R_2
 R_3
 R_3

- A. Condensation of 1b with 5-nitro-pyridine-2,3-diamine with PPA leads to formation of azabenzimidazole 1g.
- B. Coupling of the amine to form a amide either by using an acid chloride in pyridine as solvent or direct coupling of carboxylic acid using a suitable peptide coupling agent such as HATU in presence of amine base such as Et₃N, DIEA (Hunig's base). Carbamates can be formed either by reaction with R₂OCOCl or activated carbonates such as 4-nitrophenyl activated carbonates in the presence of base such as pyridine or DIEA. Sulfonamides are formed by the reaction of sulfonyl chloride with aniline in the presence of base such as pyridine. Urea's are formed by reaction of 35 amine with isocyanate or carbamoyl chloride in DMF with or without base.
- C. Reduction of nitro reduction to the corresponding amine using tin chloride and ethanol as solvent. This reduction

- can also be achieved by other metals such as Fe, HCl or zinc. Alternatively, this reduction can be carried out by catalytic hydrogentation using Pd, Pt, or Raney-Ni using hydrogen gas as atmosphere.
- D. Coupling of the amine to form an amide either by using an acid chloride in pyridine as solvent or direct coupling of carboxylic acid using a suitable peptide coupling agent such as HATU in presence of amine base such as Et₃N, DIEA (Hunig's base). Carbamates can be formed either by reaction with R₂OCOCl or activated carbonates such as 4-nitrophenyl activated carbonates in the presence of base such as pyridine or DIEA. Sulfonamides are formed by the reaction of sulfonyl chloride with aniline in the presence of base such as pyridine. Urea's are formed by reaction of amine with isocyanate or carbamoyl chloride in DMF with or without base.

Scheme 2. Preparation of azabenzimidazoles compounds with a *—NH(L_1)R₁—linker.

-continued
$$HN$$
 $H_{2}N$
 R_{3}
 2 -d

- A. Condensation of 2a with 1b with polyphosphoric acid ²⁵ (PPA) leads to formation of azabenzoxazole 2-b.
- B. Coupling of the amine to form a amide either by using an acid chloride in pyridine as solvent or direct coupling of carboxylic acid using a suitable peptide coupling agent 30 D. Coupling of the amine to form a amide either by using an such as HATU in presence of amine base such as Et₃N, DIEA (Hunig's base). Carbamates can be formed either by reaction with R.OCOCl or activated carbonates such as 4-nitrophenyl activated carbonates in the presence of base such as pyridine or DIEA. Sulfonamides are formed by the reaction of sulfonyl chloride with aniline in the presence of base such as pyridine. Urea's are formed by reaction of amine with isocyanate or carbamoyl chloride in DMF with or without base.
- C. Reduction of nitro reduction to the corresponding amine using tin chloride and ethanol as solvent. This reduction

- can also be achieved by other metals such as Fe, HCl or zinc. Alternatively, this reduction can be carried out by catalytic hydrogentation using Pd, Pt, or raney-Ni using hydrogen gas as atmosphere.
- acid chloride in pyridine as solvent or direct coupling of carboxylic acid using a suitable peptide coupling agent such as HATU in presence of amine base such as Et₃N, DIEA (Hunig's base). Carbamates can be formed either by reaction with R_xOCOCl or activated carbonates such as 4-nitrophenyl activated carbonates in the presence of base such as pyridine or DIEA. Sulfonamides are formed by the reaction of sulfonyl chloride with aniline in the presence of base such as pyridine. Urea's are formed by reaction of amine with isocyanate or carbamoyl chloride in DMF with or without base.

Scheme 3. Preparation of Azabenzimidazoles compounds with a *--- NH(CH₂)R_xlinker.

$$\begin{array}{c|c} & & & \\ &$$

$$\begin{array}{c|c} & & & & \\ & & & & \\ R_x & & & \\ N & & & \\ N & & & \\ N & & \\ N$$

A. Reductive amination of aniline with aldehyde with sodium triacetoxy borohydride and acetic acid lead to the formation of secondary amines 3-a. Alternatively, sodium cyano borohydride can be used to achieve the same transforma-

The invention further includes any variant of the present processes, in which an intermediate product obtainable at any stage thereof is used as starting material and the remaining steps are carried out, or in which the starting materials are formed in situ under the reaction conditions, or in which the 10 reaction components are used in the form of their salts or optically pure material.

Compounds of the invention and intermediates can also be converted into each other according to methods generally known to those skilled in the art.

Compounds of the invention are useful in the treatment and/or prevention of infections such as Leishmaniasis, Human African Trypanosomiasis, or Chagas disease.

Leishmaniasis is a disease caused by protozoan parasites that belong to the genus Leishmania, typically caused by 20 Leishmania donovani. Leishmania infantum, Leishmania braziliensis, Leishmania panamensis, Leishmania guayanensis, Leishmania amazonensis, Leishmania mexicana, Leishmania tropica, or Leishmania major, and more typically caused by Leishmania donovani. These parasites are typically 25 all in subtropical and equatorial Africa. It is endemic in southtransmitted by the bite of an infected female sandfly from Phlebotomus or Lutzomyia genus.

Leishmaniasis is mostly a disease of the developing world, and is rarely known in the developed world outside a small number of cases, mostly in instances where troops are sta- 30 tioned away from their home countries. Leishmaniasis can be transmitted in many tropical and subtropical countries, and is found in parts of about 88 countries. Approximately 350 million people live in these areas. The settings in which leishmaniasis is found range from rainforests in Central and 35 South America to deserts in West Asia and the Middle East. It affects as many as 12 million people worldwide, with 1.5-2 million new cases each year. The visceral form of leishmaniasis has an estimated incidence of 500,000 new cases and cases of visceral leishmaniasis are in India, Bangladesh, Nepal, Sudan, and Brazil. Kabul is estimated as the largest center of cutaneous leishmaniasis in the world, with approximately 67,500 cases as of 2004.

There are four main forms of Leishmaniasis. Cutaneous 45 leishmaniasis is the most common form of leishmaniasis. Visceral leishmaniasis, also called kala-azar, is the most serious form in which the parasites migrate to the vital organs. Visceral leishmaniasis is caused by the parasite *Leishmania* donovani, and is potentially fatal if untreated.

Currently, no vaccines are in routine use. The two main therapies for visceral leishmaniasis are the antimony derivatives sodium stibogluconate (Pentostam®) and meglumine antimoniate (Glucantim®). Sodium stibogluconate has been used for about 70 years and resistance to this drug is a growing 55 problem. In addition, the treatment is relatively long and painful, and can cause undesirable side effects. Amphotericin (AmBisome) is now the treatment of choice. Miltefosine (Impavido), and paromomycin are the other treatment alternatives. These drugs are known to produce a definitive cure in 60 >90% of patients. Amphotericin (AmBisome) is expansive and has to be given intravenously; it is not affordable to most patients affected. Paromomycin, although affordable, requires intramuscular injections for 3 weeks; compliance is a major issue. Miltefosine is an oral drug and has shown to be 65 more effective and better tolerated than other drugs. However, there are problems associated with the use of miltefosine that

52

arise from its teratogenicity and pharmacokinetics. Miltefosine was shown to be much slower eliminated from the body and was still detectable five months after the end of treatment. The presence of subtherapeutic miltefosine concentrations in the blood beyond five months after treatment might contribute to the selection of resistant parasites and, moreover, the measures for preventing the teratogenic risks of miltefosine must be reconsidered. This led to some reluctance to taking Miltefosine by affected populations.

The Drugs for Neglected Diseases Initiative is actively facilitating the search for novel therapeutics. Our invention

Human African trypanosomiasis (HAT), also known as African sleeping sickness, is a vector-borne parasitic disease caused by the protozoa Trypanosoma brucei. There are two subspecies that infect humans, T.b. gambiense and T.b. rhodesiense, with the former accounting for over 95% of reported cases and the latter accounting for the remaining reported cases. The parasites are transmitted to humans by tsetse fly (Glossina genus) bites which have acquired their infection from human beings or from animals harboring the human pathogenic parasites.

The disease has been recorded as occurring in 36 countries, east Uganda and western Kenya. In 1995, the WHO estimated that 300,000 people were afflicted with the disease. In its 2001 report, the WHO set the figure of people at risk of infection at 60 million, of which only 4 to 5 million had access to any kind of medical monitoring. In 2006, the WHO estimated that about 70,000 people could have the disease, and many cases are believed to go unreported. About 48,000 people died of sleeping sickness in 2008. Public health efforts in prevention and the eradication of the tsetse fly population have proven to be successful in controlling the spread of the disease; under 10,000 new cases were reported in 2009 according to WHO figures, which represents a huge decrease from the estimated 300,000 new cases in 1998.

African trypanosomiasis symptoms occur in two stages. In 60,000 deaths each year. More than 90 percent of the world's 40 the first stage, known as the haemolymphatic phase, the trypanosomes multiply in subcutaneous tissues, blood and lymph. The haemolymphatic phase is characterized by bouts of fever, headaches, joint pains and itching. In the second stage, the neurological phase, the parasites cross the bloodbrain barrier to infect the central nervous system. It is in this stage when more obvious signs and symptoms of the disease appear: changes of behaviour, confusion, sensory disturbances and poor coordination. Disturbance of the sleep cycle, which gives the disease its name, is an important feature of the second stage of the disease. Without treatment, the disease is invariably fatal, with progressive mental deterioration leading to coma, systemic organ failure, and death.

Four drugs are registered for the treatment of sleeping sickness. The protocol depends on the stage of the disease. The current standard treatment for first-stage disease is intravenous or intramuscular pentamidine (for T.b. gambiense), or intravenous suramin (for T.b. rhodesiense). The current standard treatment for second-stage disease is: Intravenous melarsoprol, or interavenous melarsoprol in combination with oral nifurtimox, intravenous effornithine only or effornithine in combination with nifurtimox. All of the drugs have undesirable or sometime serious side effects. For example, 3-10% of patients those injected with Melarsoprol (Arsobal), an organoarsenical, developed reactive encephalopathy (convulsions, progressive coma, or psychotic reactions), and 10-70% of such cases result in death. There remains a need for new therapy.

Chagas disease, also called American trypanosomiasis, is a tropical parasitic disease caused by the flagellate protozoan *Trypanosoma cruzi. T. cruzi* is commonly transmitted to humans and other mammals by the blood-sucking "kissing bugs" of the subfamily Triatominae (family Reduviidae).

Chagas disease is contracted primarily in the Americas. It is endemic in twenty one Central and Latin American countries; particularly in poor, rural areas of Mexico, Central America, and South America. Large-scale population movements from rural to urban areas of Latin America and to other regions of the world have increased the geographic distribution of Chagas disease, and cases have been noted in many countries, particularly in Europe. Rarely, the disease has been found in the Southern part of the United States.

Each year, an estimated 10 to 15 million people across the world are infected with Chagas disease, most of whom do not know they are infected. Every year, 14,000 people die as a consequence of the disease. In Central and South America, Chagas kills more people than any other parasite-borne disease, including malaria. By applying published seroprevalence figures to immigrant populations, CDC estimates that more than 300,000 persons with *Trypanosoma cruzi* infection live in the United States. Most people with Chagas disease in the United States acquired their infections in endemic countries.

Chagas disease has an acute and a chronic phase. If untreated, infection is lifelong. Acute Chagas disease occurs immediately after infection, may last up to a few weeks or months, and parasites may be found in the circulating blood. 30 Infection may be mild or asymptomatic. There may be fever or swelling around the site of inoculation (where the parasite entered into the skin or mucous membrane). Rarely, acute infection may result in severe inflammation of the heart muscle or the brain and lining around the brain. The initial 35 acute phase is responsive to antiparasitic treatments, with 60-90% cure rates. Following the acute phase, most infected people enter into a prolonged asymptomatic form of disease (called "chronic indeterminate") during which few or no parasites are found in the blood. During this time, most people 40 are unaware of their infection. Many people may remain asymptomatic for life and never develop Chagas-related symptoms. However, an estimated 20-30% of infected people will develop debilitating and sometimes life-threatening medical problems over the course of their lives.

The symptoms of Chagas disease vary over the course of an infection. In the early, acute stage, symptoms are mild and usually produce no more than local swelling at the site of infection. The initial acute phase is responsive to antiparasitic treatments, with 60-90% cure rates. After 4-8 weeks, individuals with active infections enter the chronic phase of Chagas disease that is asymptomatic for 60-80% of chronically infected individuals through their lifetime.

There is no vaccine against Chagas disease. Treatment for Chagas disease focuses on killing the parasite and managing 55 signs and symptoms.

During the acute phase of Chagas disease, the drugs currently available for treatment are benznidazole and nifurtimox. Once Chagas disease reaches the chronic phase, medications aren't effective for curing the disease. Instead, 60 treatment depends on the specific signs and symptoms. However, problems with these current therapies include their diverse side effects, the length of treatment, and the requirement for medical supervision during treatment. Resistance to the two frontline drugs has already occurred. The antifungal 65 agent Amphotericin b has been proposed as a second-line drug, but this drug is costly and relatively toxic.

54

In accordance with the foregoing, the present invention further provides a method for preventing or treating Leishmaniasis, Chagas disease or Human African Trypanosomiasis in a subject in need of such treatment, which method comprises administering to said subject a therapeutically effective amount of a compound selected from Formula I or a pharmaceutically acceptable salt thereof. The required dosage will vary depending on the mode of administration, the particular condition to be treated and the effect desired.

In one embodiment of the method of the invention, the disease being treated is Leishmaniasis caused by the parasites Leishmania donovani, Leishmania infantum, Leishmania braziliensis, Leishmania panamensis, Leishmania guayanensis, Leishmania amazonensis, Leishmania mexicana, Leishmania tropica, Leishmania major. In one variation of the above embodiment, the disease being treated is Visceral leishmaniasis, caused by the parasite Leishmania donovani.

In another embodiment of the method of the invention, the disease being treated is Human African Trypanosomiasis caused by a protozoa belonging to the species *Trypanosoma brucei*. In one embodiment, the protozoa is *Trypanosoma brucei gambiense*. In another embodiment, the protozoa is *Trypanosoma brucei rhodesiense*.

In yet another embodiment of the method of the invention, the disease being treated is Chagas disease (also call American Trypanosomiasis) caused by protozoa *Trypanosoma* cruzi

In general, compounds of the invention will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents. A therapeutically effective amount may vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.03 to 2.5 mg/kg per body weight. An indicated daily dosage in the larger mammal, e.g. humans, is in the range from about 0.5 mg to about 100 mg, conveniently administered, e.g. in divided doses up to four times a day or in retard form. Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.

Compounds of the invention can be administered as pharmaceutical compositions by any conventional route, in particular enterally, e.g., orally, e.g., in the form of tablets or capsules, or parenterally, e.g., in the form of injectable solutions or suspensions, topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form. Pharmaceutical compositions comprising a compound of the present invention in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent can be manufactured in a conventional manner by mixing, granulating or coating methods. For example, oral compositions can be tablets or gelatin capsules comprising the active ingredient together with a) diluents, e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine; b) lubricants, e.g., silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also c) binders, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and or polyvinylpyrrolidone; if desired d) disintegrants, e.g., starches, agar, alginic acid or its sodium salt, or effervescent mixtures; and/or e) absorbents, colorants, flavors and sweeteners. Injectable compositions can be aqueous isotonic solutions or suspensions, and suppositories can be prepared from fatty emulsions or suspensions. The compositions may be

body of the patient. The latter also applies to cocktail therapy, e.g. the administration of 3 or more active ingredients.

sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they may also contain other therapeutically valuable substances. Suitable formulations for transdermal applications include an effective amount of a compound of the present invention with a carrier. A carrier can include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host. For example, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin. Matrix transdermal formulations may also be used. Suitable formulations for topical application, e.g., to the skin and eyes, are preferably aqueous solutions, ointments, creams or gels well-known in the art. Such may contain solubilizers, stabilizers, tonicity 20 enhancing agents, buffers and preservatives.

Compounds of the invention can be administered in therapeutically effective amounts in combination with one or more therapeutic agents (pharmaceutical combinations). In one with the known treatment drugs. For example, for the treatment of Leishmaniasis, compound of the invention may be used in combination with stibogluconate, meglumine antimoniate, Amphotericin, Miltefosine and paromomycin. For the treatment of Human African Trypanosomiasis, the compound of the invention may be used in combination with pentamidine, suramin, melarsoprol, eflornithine, and nifurtimox. For the treatment of Chagas disease, the compound of the invention may be used in combination with benznidazole, nifurtimox and Amphotericin.

Where the compounds of the invention are administered in conjunction with other therapies, dosages of the co-administered compounds will of course vary depending on the type of co-drug employed, on the specific drug employed, on the 40 condition being treated and so forth.

The invention also provides for a pharmaceutical combinations, e.g. a kit, comprising a) a first agent which is a compound of the invention as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) optionally 45 co-agent. The kit can comprise instructions for its administration.

The terms "co-administration" or "combined administration" or the like as utilized herein are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.

The term "pharmaceutical combination" as used herein means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients. The term "fixed combination" means that the active ingredients, e.g. a compound of Formula I and a co-agent, are both administered 60 to a patient simultaneously in the form of a single entity or dosage. The term "non-fixed combination" means that the active ingredients, e.g. a compound of Formula I and a coagent, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no 65 specific time limits, wherein such administration provides therapeutically effective levels of the 2 compounds in the

Biological Assays

Assay for Leishmania Proliferation In Vitro

Leishmania donovani axenic amastigote parasites are grown at 37° C., 5% CO₂ in media made of RPMI 1640, 4 mM L-glutamine, 20% heat inactivated FBS, 100 units/ml of penicillin and 100 µg/ml of streptomycin, 23 µM Folic Acid, 100 μM Adenosine, 22 mM D-glucose, 25 mM MES. The pH of media is adjusted to 5.5 at 37° C. using HCl. 20 μL of media is first dispensed into 384 well plates and 100 mL of the compounds of invention in DMSO are added to the plate wells. At the same time control compounds and DMSO are added to plates to serve as the positive and negative controls, respectively. 40 µL of parasite culture (9600 parasites) are then added to the plate wells. The plates are then placed into incubators. After 2 day incubation, 20 µL of Cell TiterGlo (Promega) is added to the plate wells. The luminescence signal of each well is measured using the Envision reader (Perkin Elmer). The percentage inhibition of 50%, EC_{50} , is calculated for each of the compounds.

Compounds of the invention have an EC₅₀ range between embodiment, the compound of the invention is administered 25 >25 μ M to 0.13 μ M; typically between 20 μ M or less, typically less than 5 µm, and about half of the compounds have an EC_{50} below 1 μ M. Selected compounds of the invention can significantly delay the proliferation of L. donovani. The inhibitory efficacy of the compounds of the invention against L. donovani axenic amastigotes in vitro is provided in Table I. Assay for Proliferation of *Leishmania* Parasites

> The activity of a compound according to the present invention for inhibition of parasitemai can be assessed by the parasite proliferation assay. The assay measures the increase in the parasite number in the assayed plate well using a DNA intercalating dye, SYBR Green I® dye (INVITROGEN) to stain Leishmania cell nuclei. It is understood that the assays illustrate the invention without in any way limiting the scope of the invention.

> L. donovani HU3 strain is propagated by infecting BALBc mice through tail vein injection with 10⁷ Leishmania parasites. Infected mice are allowed to develop infection during 9-11 weeks post-infection. During this time, the parasites accumulate in the infected mouse spleens to large numbers, and the infected mice serve as the source of parasites for the in vitro measurement of compound efficacies. To assay a compound for anti-leishmanial activity, peritoneal macrophages isolated from non-infected BALBc mice are seeded into 384-well plates at density 2×10^4 macrophages per well in 25 mL of medium (RPMI1640, 10% fetal serum albumin, 10 mM HEPES, 1 mM sodium pyruvate, 1% Pen/Strep). Subsequently, the seeded plates are placed into an incubator set to maintain 37° C. temperature and atmosphere with 5% CO₂. The next day, Leishmania parasites are isolated from the spleens of mice infected for 9-11 weeks and 4×10⁵ isolated parasites in 10 mL of the above media are added to each plate well. Plates are then returned into incubators and infection is allowed to proceed for 24 hours. After the infection of macrophages is completed, 5 mL of compounds of the invention in the above medium, which also contains 5% DMSO, are added to plate wells containing infected macrophages. At the same time control compounds (miltefosine and amphotericin B) and DMSO are added to plates to serve as the positive and negative controls, respectively. After the compound addition, the plates are returned into incubator and cells infected with parasites are cultured for 5 days. At the end of cultivation, 40 mL of 8% paraformaldehyde is added to plate wells and

56

incubated for 15 min at room temperature. Following the incubation, the paraformal dehyde from plate wells is aspirated, and 40 mL of PBS containing 0.2% Triton X-100 is added to wells. After 15 min incubation, the solution is aspirated from wells again, and replaced with SybrGreen Dye 5 solution in PBS (1:125,000 dilution). Infected cells are imaged with Evotec Opera high-content microscope, and the number of parasites in well is determined by counting parasite nuclei visualized by staining with SybrGreen dye. The percentage inhibition of 50%, EC50, is calculated for each 10 compound.

Compounds of the invention have EC_{50} in a range between >50 μ M to 0.315 μ M, typically below 10 μ M. Selected compounds have EC_{50} less than 1 μ M. The inhibitory efficacy of the compounds of the invention against proliferation of L. 15 donovani in mouse peritoneal macrophages is provided in Table I

Assay for Proliferation of Kinetoplastid Parasite *Trypanosoma brucei*.

The proliferation is quantified by the addition of Cell Titer 20 Glo (Promega®) a luminescent cell viability assay that measures the number of viable cells in culture based on the quantification of cellular ATP amount, which is an indicator of metabolically active cells. The following assay illustrates the invention without in any way limiting the scope of the invention. This parasite proliferation assay measures the increase in parasite growth using an assay that measures ATP activity, Cell Titer Glo®.

Trypanosoma brucei Lister 427 strain is grown in HMI-9 Trypanosome media for T. brucei bloodstream form. $30\,\mu l$ of $30\,HMI$ -9 media is dispensed into 384 well assay plates. $200\,nL$ of compounds of the invention (in DMSO), including antitrypanosome controls (Pentamidine and suramin), are then transferred into the assay plates, as well as DMSO alone to serve as a negative control for inhibition. Then $25\,\mu l$ of a $35\,suspension$ of T. brucei culture in HMI-9 media is dispensed into the assay plates. The final concentration of parasites in culture corresponds to 1.7% of $0.5\,uM$ ATP activity with Cell Titer Glo® in HMI-9 media. The plates are placed in a 37° C. incubator for $48\,hours$ in an atmospheric environment containing $5\%\,CO_2$. $40\,\mu l$ of Cell Titer Glo® is dispensed into the plates. The plates are then read for luminescence. The percentage inhibition of 50%, EC_{50} , is calculated for each compound.

Compounds of the invention have EC_{50} in a range between 45 >20 μ M to 0.142 μ M, typically below 10 μ M. Selected compounds have EC_{50} less than 1 μ M. The inhibitory efficacy of the compounds of the invention against proliferation of *T. brucei* is provided in Table I.

Assay for Proliferation of Kinetoplastid Parasite *Trypano*- 50 soma cruzi.

Compounds of the invention can be assayed to measure their capacity to inhibit proliferation of kinetoplastid parasite *Trypanosoma cruzi*. The screening procedure is for identifying compounds with inhibitor activity against *Trypanosoma scruzi* amastigotes cultured in 3T3 fibroblast cells. The assay is done using the mammalian stage (amastigotes) of *T. cruzi* that replicates in the intracellular space of host cells. The host cells are initially infected with the culture-derived trypomastigotes that rapidly invade and then divide as amastigotes. The protocol uses the Tulahuen strain of *T. cruzi* that has been engineered to express the *E. coli* beta-galactosidase gene (Lac-Z) (Antimicr. Agents Chemoth. 40:2592, 1996). This allows for a colorimetric readout by using the substrate CPRG and an absorbance plate reader.

3T3 fibroblast cells are re-suspended in RPMI-1640 medium without phenol red medium supplemented with 10%

58

FBS (heat inactivated), 100 µg/ml penicillin, and 100 µg/ml streptomycin. Forty µL of suspension (1,000 cells) is dispensed into 384-well plates and incubated overnight at 37° C. temperature and in atmosphere containing 5% CO₂. The following day, 100 nL of compounds of the invention in DMSO are added to plate wells containing 3T3 cells. At the same time control compounds (benznidazole and nifurtimox) and DMSO are added to plates to serve as the positive and negative controls, respectively. After that, 10 µL of media containing 10,000 T. cruzi trypomastigotes are added to each plate well and plates are placed back into incubators. After 6 day incubation, 10 µL of reagent solution (0.6 mM CPRG, 0.6% NP-40 in PBS) is added to plates and incubated at room temperature for 2 hours. Absorbance is then measured on SpectraMax Gemini fluorimeter to determine relative number of *T. cruzi* cells present in each plate well. The percentage inhibition of 50%, EC_{50} , is calculated for each compound.

Compounds of the invention have an EC $_{50}$ of 15 μ M or less, typically less than 2 μ M. Selected compounds have EC $_{50}$ of 100 nM or less. Compounds of the invention can significantly delay the proliferation of *T. cruzi*.

The inhibitory efficacy of the compounds of the invention in delaying the proliferation of *T. cruzi* is provided in Table I.

TABLE I

Inhibitory efficacy of seleced compounds of the invention against L. donovani, T. brucei or T cruzi proliferation

Example No.	L. donovani amastigotes EC50 (μM)	L. donavani Macrophage EC50 (μM)	T cruzi EC50 (μM)	T. brucei EC50 (μM)
1	0.13	0.72	n.d.	n.d.
2	0.19	0.315	0.142	0.039
3	7.7	2.47	2.23	0.23
4	0.44	0.83	n.d.	n.d.
5	0.57	>50	1.86	n.d.
6	0.58	1.42	n.d.	0.034
7	0.64	1.35	0.147	n.d.
8	0.96	12.4	1.02	n.d.
9	0.95	2.48	n.d.	0.143
10	1.17	2.29	3.7	n.d.
11	1.84	16.6	1.27	n.d.
12	2.34	>26.1	11	n.d.
13	2.35	8.6	n.d.	n.d.
14	4.5	3.3	3.3	n.d.
15	5.1	8.7	1.85	0.64
16	5.7	10.1	4	n.d.
17	7.6	13.3	n.d.	n.d.
18	8.9	16.9	n.d.	1.72
19	13.3	25.5	>20	n.d.
20	13.6	18.9	4.7	1.38
21	17.7	>50	>20	1.59
22	20.7	>50	n.d.	0.76
23	21	34.1	n.d.	n.d.
24	23.2	>39.2	>20	n.d.
25	23.2	>50	>20	n.d.
26	>25	23.3	14.8	0.53
27	>25	>50	n.d.	n.d.
28	>25	>50	n.d.	n.d.
29	>25	>50	n.d.	n.d.
30	>25	>50	>20	n.d.
31	>25	>50	n.d.	n.d.
32	>25	>50	>20	7.8
33	>25	>50	19.1	n.d.
34	>25	>50	>20	15.2
35	11.4	>50	>20	0.907
36	>25	>50	19	n.d.
37	0.85	0.53	n.d.	n.d.
38	2.13	3.7	4.4	n.d.
39	13.8	17.7	6.7	n.d.
40	>25	8.5	n.d.	n.d.
41	0.68	1.45	0.82	0.08
42	1.09	1.91	1.32	0.185
43	>25	47.4	>20	n.d.

35

40

59

TABLE I-continued

Inhibitory efficacy of seleced compounds of the invention against

	L. donovani, T. brucei or T cruzi proliferation					
Example No.	L. donovani amastigotes EC50 (μM)	L. donavani Macrophage EC50 (μM)	T cruzi EC50 (μM)	T. brucei EC50 (μM)		
44	2.38	5.3	3.9	0.282		
45	0.45	1.16	2.86	0.115		
46	>25	>50	>20	n.d.		
47	0.9	1.52	0.4	0.2		
48	0.62	0.56	0.141	0.223		
49	0.48	0.49	0.44	0.081		
50	6	5.1	n.d.	n.d.		
51	>25	8.8	n.d.	n.d.		
52	>25	28.9	>20	n.d.		
53	1.31	1.74	3.2	n.d.		
54	0.59	1.86	1.39	0.068		
55	0.95	0.83	1.25	0.075		
56	2.96	2.23	1.23	0.346		
57	8.2	12.8	7.4	0.5		
58	>25	>50	>20	n.d.		
59	>25	>22.8	>20	n.d.		
60	2.43	17.9	n.d.	n.d.		
61	2.69	3.13	>20	n.d.		
62	>25	>28.8	>20	n.d.		
63	0.46	0.53	0.248	0.044		
64	21.1	>50	n.d.	n.d.		
65	1.47	0.57	1.02	0.023		
66	>25	39.2	>20	2.3		
68	6.2	7	7.6	0.411		
69	>25	>50	n.d.	n.d.		
70	1.2	0.53	0.72	0.032		
71	1.4	0.263	0.153	0.03		
72	>25	34.1	>20	5.36		
73	>25	>50	>20	n.d.		
74	10.75	>50	n.d.	n.d.		
75	0.132	0.166	n.d.	n.d.		
76	0.26	0.45	n.d.	n.d.		
77	>25	22.9	n.d.	n.d.		
78	4.7	1.39	1.44	0.2		
79	>25	24.5	1.46	n.d.		

n.d. means not determined

EXAMPLES

The present invention is further exemplified, but not to be limited, by the following examples and intermediates that illustrate the preparation of compounds of the invention. It is understood that if there appears to be a discrepancy between the name and structure of a particular compound, the structure is to be considered correct as the compound names were generated from the structures.

Temperatures are given in degrees Celsius. If not mentioned otherwise, all evaporations are performed under reduced pressure, typically between about 15 mm Hg and 100 mm Hg (=20-133 mbar). The structure of final products, intermediates and starting materials is confirmed by standard analytical methods, e.g., microanalysis and spectroscopic characteristics, e.g., MS, IR, NMR. Abbreviations used are those conventional in the art.

All starting materials, building blocks, reagents, acids, bases, dehydrating agents, solvents, and catalysts utilized to synthesis the compounds of the present invention are either 60 commercially available or can be produced by organic synthesis methods known to one of ordinary skill in the art (Houben-Weyl 4th Ed. 1952, Methods of Organic Synthesis, Thieme, Volume 21). Further, the compounds of the present invention can be produced by organic synthesis methods 65 known to one of ordinary skill in the art as shown in the following examples.

Method for Analysis:

Method A:

Agilent G1379A Degasser

Agilent G1312A Binary Pump

Agilent G1315B Diode Array Detector

Leap Technologies HTS Pal Autosampler

Sedex 75 Evaporative Light Scattering Detector

Waters ZQ2000 Mass Spectrometer

O HPLC Column: Thermo Accucore aQ C18 2.6 um 30×2.1 mm

Mobile Phase: (A) $\rm H_2O+0.05\%$ TFA and (B) Acetonitrile+ 0.05% TFA

15 Gradient: 1 mL/minute, initial 5% B for 0.1 minutes, ramp to 90% B over 2.5 minutes, then to 100% B at 2.61 and hold until 3.10 minutes, return to 5% B to at 3.15 minutes until end of run at 3.25. The column is re-equilibrated in the ~30 seconds between injections.

MS Scan: 180 to 800amu in 0.4 seconds Diode Array Detector: 214 nm-400 nm Method: B

Waters Acquity UPLC system:

Acquity Binary Gradient Manager with Degasser Acquity Column Compartment set at 50° C.

Acquity Diode Array Detector

Leap Technologies HTS Pal Autosampler

Antek Chemiluminescent Nitrogen Detector (CLND)

Waters 3100 Mass Spectrometer

HPLC Column: Thermo Syncronis C18 30×2.1 mm

Mobile Phase: (A)₉₅% H₂O/5% MeOH/IPA (7525, v/v)+ 0.05% formic acid, (B) MeOH/IPA (7525, v/v)+0.035% formic acid

Gradient: 0.4 mL/minute, initial 2% B for 1.0 minutes, ramp to 95% B over 2.5 minutes, until 4.0 minutes, return to 2% B to at 4.25 minutes until end of run at 5.0.

MS Scan: 150 to 1000 amu in 1 second Diode Array Detector: 190 nm-400 nm

Synthesis of Intermediates

Example 1

Synthesis of N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)furan-2-carboxamide (1-1)

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

I-4

35

40

55

60

Synthesis of I-4

HO
$$\frac{\operatorname{SOCl_2}}{\operatorname{reflux}}$$
 $\stackrel{\operatorname{O}}{\underset{\operatorname{I-4}}{}}$

A solution of furan-2-carboxylic acid (10 g, 89.22 mmol, 1.00 equiv) in thionyl chloride (100 mL) was heated to reflux overnight and concentrated under vacuum to give 12 g (crude) 50 of furan-2-carbonyl chloride as brown oil.

Synthesis of I-5

$$\begin{array}{c} NH_2 \\ \hline \\ NH_2 \\ \hline \\ NH_2 \\ \hline \\ NH_2 \\ \hline \\ I-4 \\ \hline \end{array}$$

To a suspension of 5-amino-2-chlorobenzoic acid (13.7 g, ¹⁵ 79.85 mmol, 1.00 equiv) in tetrahydrofuran (100 mL) was added furan-2-carbonyl chloride (11.5 g, 88.10 mmol, 1.10 equiv) in a bath of ice and stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and diluted with DCM. The solid was collected by filtration to give 17 g (80%) of 2-chloro-5-(furan-2-amido)benzoic acid as a gray solid.

Synthesis of (I-3)

$$\begin{array}{c|c} N & NH_2 & \hline \\ NH_2 & \hline$$

A mixture of 5-nitropyridine-2,3-diamine (1-2) (6 g, 38.93 mmol, 1.00 equiv) and 2-chloro-5-(furan-2-amido)benzoic acid (I-3) (10.4 g, 39.15 mmol, 1.00 equiv) in PPA (100 mL) was stirred overnight at 130° C. The reaction was then poured into water/ice and the pH value of the mixture was adjusted to 9 with sodium carbonate. The solids were collected by filtration and applied onto a silica gel column with ethyl acetate/ petroleum ether (31) to give 3.9 g (26%) of N-(4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]phenyl)furan-2carboxamide (I-3) as a light yellow solid.

Synthesis of (I-1)

35

50

55

65

10 I-1

To a suspension of N-(4-chloro-3-[6-nitro-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl)furan-2-carboxamide (3.9 g, 10.16 mmol, 1.00 equiv) in ethanol (50 mL) was added SnCl₂.2H₂O (3.4 g, 15.04 mmol, 1.48 equiv) and heated to reflux overnight. The reaction mixture was concentrated under vacuum and diluted with H2O. The pH value of the mixture was adjusted to 9 with sodium carbonate (sat.). The solids were collected by filtration and applied onto a silica gel column with ethyl acetate/PE (3/1) to give 1.95 g (54%) of N-(3-[6amino-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl)furan-2-carboxamide as a yellow solid. ¹H-NMR: (CD₃OD, 400 MHz): 8.16 (d, J=2.4 Hz, 1H), 7.97-8.10 (m, 2H), 7.78 (d, J=0.8 Hz, 1H), 7.65 (d, J=20.0 Hz, 1H), 7.31-7.41 (m, 2H), 6.68 (dd, J=3.6, 2.0 Hz, 1H. MS (M+H)+=354.

Example 2

Synthesis of N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-fluorofuran-2-carboxamide (I-9)

$$O_2N$$
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 O_2N
 O_2N

-continued
$$HN$$
 \longrightarrow N \longrightarrow

I-9

Synthesis of I-6

$$\begin{array}{c} NH_2 \\ O_2N \\ I-2 \\ NH_2 \\ O_2N \\ NH_2 \\ O_2N \\ NH_2 \\ O_2N \\ NH_2 \\ NH_2 \\ O_2N \\ NH_2 \\ NH_$$

Into a 1-L round-bottom flask, was placed 5-nitropyridine-2,3-diamine (30 g, 194.65 mmol, 1.00 equiv), 5-amino-2chlorobenzoic acid (33.4 g, 194.66 mmol, 1.00 equiv), PPA 40 (400 mL). The resulting solution was stirred for 2 days at 130° C. The reaction mixture was cooled with a water/ice bath. The resulting solution was diluted with 400 mL of ice water. The pH value of the solution was adjusted to 7 with sodium hydroxide (5%). The solids were collected by filtration and 45 washed with 3×50 mL water. The solid was dried in an oven under reduced pressure. This resulted in 40 g (71%) of 4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]aniline (I-6) as a yellow solid.

Synthesis of I-8

30

$$O_2N$$
 N
 N
 N
 N
 Cl
 $I-8$

Into a 500-mL round-bottom flask, was placed a solution of 4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]aniline (I-6) (8 g, 27.62 mmol, 1.00 equiv) in N,N-dimethylformamide (50 mL), 1-7 (3.6 g, 28.10 mmol, 1.02 equiv), HATU (12.6 g, 33.14 mmol, 1.20 equiv), DIEA (7.14 g, 55.25 mmol, 2.00 equiv). The resulting solution was stirred overnight at 100° C. The resulting solution was diluted with 100 mL of EA. The resulting mixture was washed with 3×100 mL of H₂O. The organic phase was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:1). The collected fractions were combined and concentrated under vacuum. This resulted in 6.5 g (59%) of N-(4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]phenyl)-5-fluorofuran-2-carboxamide (I-8) as a gray solid

Synthesis of I-9

Into a 250-mL round-bottom flask, was placed a solution of N-(4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]phenyl)-5-fluorofuran-2-carboxamide(1-8) (3.5 g, 8.71 mmol, 1.00 equiv), SnCl $_2$.2H $_2$ O (9.89 g, 43.83 mmol, 5.03 equiv) in ethanol (100 mL). The resulting solution was stirred for 3 h at 80° C. The resulting mixture was concentrated under vacuum. The residue was dissolved in 100 mL of H $_2$ O. The resulting solution was diluted with 100 mL of EA. The resulting solution was extracted with 3×200 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. This resulted in 1.55 g (48%) of N-(3-[6-amino-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl)-5-fluorofuran-2-carboxamide (1-9) as a yellow solid. 1 H NMR (400 MHz, CD3OD): δ 8.15 (s, 1H), 8.03 (s, 1H), 7.91-7.94 (m, 1H),

7.57-7.59 (m, 1H), 7.31-7.34 (m, 2H), 5.89-5.92 (m, 1H). (ES, m/z): $[M+H]^+=372$ (M+1)

Example 3

Synthesis of N-(3-(6-aminooxazolo[4,5-b]pyridin-2-yl)-4-chlorophenyl)furan-2-carboxamide (I-15)

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_3
 O_4
 O_4

$$P_{2N}$$
 P_{N}
 $P_{$

$$H_2N$$
 O
 Cl
 $I-15$

55

60

OH
THF, CDI
reflux overnight

O

Into a 3-L 3-necked round-bottom flask, was placed a solution of 2-aminopyridin-3-ol (100 g, 908.15 mmol, 1.00 equiv), 1-[(1H-imidazol-1-yl)carbonyl]-1H-imidazole (221.3 g, 1.36 mol, 1.50 equiv) in THF (1000 mL). The resulting solution was heated to reflux overnight. After cooling, the reaction was concentrated under vacuum. The residue was dissolved in 1000 mL of DCM and extracted with 1M NaOH (3×800 mL). The combined liquids were cooled with a water/ice bath and adjusted to pH 5-6 by adding 3M HCl. The solids were collected by filtration. The solid was dried in an oven under reduced pressure. This resulted in 90 g (73%) of 2H,3H-[1,3]oxazolo[4,5-b]pyridin-2-one (1-10) as a gray solid.

Synthesis of I-11

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ N & & \\ N & & \\ & & \\ I-10 & & \\ & &$$

Into a 3-L 3-necked round-bottom flask, was placed a solution of 2H,3H-[1,3]oxazolo[4,5-b]pyridin-2-one (90 g, 661.24 mmol, 1.00 equiv) in sulfuric acid (400 mL). This was followed by the addition of HNO $_3$ (200 mL) dropwise with stirring at -5° C. The resulting solution was stirred for 2 days at 50° C. The resulting solution was diluted with 1000 mL of ice water. The solids were collected by filtration and dried in an oven under reduced pressure. This resulted in 30 g (25%) of 6-nitro-2H,3H-[1,3]oxazolo[4,5-b]pyridin-2-one (I-11) as a light yellow solid.

Synthesis of I-12

$$O_2N$$
 O_2N
 O_2N

Into a 500-mL round-bottom flask, was placed a solution of 6-nitro-2H,3H-[1,3]oxazolo[4,5-b]pyridin-2-one (30 g, 165.65 mmol, 1.00 equiv) in ethanol (130 mL). Then a solution of sodium hydroxide (24 g, 600.00 mmol, 3.62 equiv) in 65 water (225 mL) was added. The resulting solution was stirred for 3 h at 80° C. The reaction was then quenched by the

68

addition of 48 mL of concentrated hydrochloric. The pH value of the solution was adjusted to 8 with 2M sodium carbonate. The solids were collected by filtration. This resulted in 10 g (39%) of 2-amino-5-nitropyridin-3-ol (I-12) as a yellow solid.

Synthesis of I-13

$$O_2N$$
 O_2N
 O_2N

Into a 1000-mL round-bottom flask, was placed 2-amino-5-nitropyridin-3-ol (9.5 g, 61.25 mmol, 1.00 equiv), 5-amino-2-chlorobenzoic acid (10.5 g, 61.20 mmol, 1.00 equiv), PPA (300 mL). The resulting solution was stirred for 2 days at 150° C. The reaction was then quenched by the addition of 1000 mL of water/ice. The pH value of the solution was adjusted to 7 with sodium hydroxide (aq.). The solids were collected by filtration. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:1). This resulted in 2 g (11%) of 4-chloro-3-[6-nitro-[1,3]oxazolo[4,5-b]pyridin-2-yl]aniline (I-13) as a red solid.

Synthesis of I-14

Into a 25-mL round-bottom flask, was placed a solution of 4-chloro-3-[6-nitro-[1,3]oxazolo[4,5-b]pyridin-2-yl]aniline (500 mg, 1.72 mmol, 1.00 equiv), HATU (785 mg, 2.06

55

mmol, 1.20 equiv), DIEA (665 mg, 5.15 mmol, 2.99 equiv), furan-2-carboxylic acid (230 mg, 2.05 mmol, 1.19 equiv) in N,N-dimethylformamide (7 mL). The resulting solution was stirred overnight at room temperature. The reaction was then quenched by the addition of 15 mL of water. The solids were collected by filtration. This resulted in 400 mg (60%) of N-(4-chloro-3-[6-nitro-[1,3]oxazolo[4,5-b]pyridin-2-yl] phenyl)furan-2-carboxamide (I-14) as a yellow solid.

Synthesis of I-15

$$O_2N$$
 O_2N
 O_2N

Into a 50-mL round-bottom flask, was placed a solution of N-(4-chloro-3-[6-nitro-[1,3]oxazolo[4,5-b]pyridin-2-yl] phenyl)furan-2-carboxamide (400 mg, 1.04 mmol, 1.00 equiv) in tetrahydrofuran (20 mL), RaneyNi (400 mg). To the above hydrogen was introduced in. The resulting solution was stirred for 30 min at room temperature. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:1). This resulted in 130 mg (35%) of N-(3-[6-amino-[1,3]oxazolo[4,5-b]pyridin-2-yl]-4-chlorophenyl)furan-2-carboxamide (I-15) as a yellow 45 solid. ¹H-NMR-: (d₆-DMSO, 300 MHz): 8.55 (s, 1H), 8.05 (s, 1H), 7.95-7.98 (m, 1H), 7.79 (s, 1H), 7.59-7.62 (m, 1H), 7.33-7.35 (m, 2H), 6.68-6.69 (m, 1H). (ES, m/z):=355 (M+1)

Example 4

Synthesis of N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)pyrrolidine-1-carboxamide (I-17)

$$NH_2$$

$$NH_2$$

$$Triphosgene$$

$$Et_3N,$$

$$CH_2Cl_2$$

$$I-6$$

$$H_{2}N$$
 N
 $H_{1}N$
 N
 Cl
 $I-17$

Synthesis of I-16

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\$$

$$O_2N$$
 N
 N
 CI
 $I-16$

Into a 250-mL round-bottom flask, was placed 4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]aniline (6 g, 20.71 mmol, 1.00 equiv), triphosgene (4.93 g), dichloromethane (100 mL). This was followed by the addition of triethylamine (17.3 mL) dropwise with stirring at 0° C. To this was added pyrrolidine (1.7 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (20:1). The crude product was purified by re-crystallization from methanol. This resulted in 3.76 g (47%) of N-(4-chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]phenyl)pyrrolidine-1-carboxamide (I-16) as a yellow solid.

Synthesis of I-17

45

50

55

60

Into a 250-mL round-bottom flask, was placed N-(4chloro-3-[6-nitro-1H-imidazo[4,5-b]pyridin-2-yl]phenyl) pyrrolidine-1-carboxamide (3 g, 7.76 mmol, 1.00 equiv), $SnCl_2H_2O$ (8.78 g), ethanol (100 mL). The resulting solution was refluxed for 1 h in an oid bath. The resulting mixture was concentrated under vacuum. The resulting solution was diluted with 100 mL of water. The pH value of the solution was adjusted to 8 with sodium hydroxide (5%). The solids were filtered out, then washed with 5×30 mL EA. The water 20 phase was extracted with 3×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/ methanol (20:1). This resulted in 2.2 g (79%) of N-(3-[6- 25 amino-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl)pyrrolidine-1-carboxamide as a yellow solid. ¹H-NMR-: (d₆-DMSO, 400 MHz): 9.84-9.85 (m, 1H), 8.46 (s, 1H), 8.09 (brs, 1H), 7.87 (s, 1H), 7.74-7.77 (m, 1H), 7.45 (d, J=8.8 Hz, 1H), 7.07 (brs, 1H), 5.22 (brs, 2H), 4.09-4.12 (m, 4H), 1.86-1.87 ³⁰ (m, 4H) EI, m/z: MS $(M+H)^+=357 (M+1)$.

Example 5

Synthesis of N-(3-(6-aminooxazolo[4,5-b]pyridin-2-yl)-4-chlorophenyl)pyrrolidine-1-carboxamide (I-19)

Triphosgene

$$O_2N$$
 O_2N
 O_2N

I-19

$$\begin{array}{c} \text{Triphosgene} \\ \text{O}_2\text{N} \\ \text{N} \\ \text{N} \\ \text{O}_2\text{N} \\ \text{CI} \\ \\ \text{N} \\ \text{N} \\ \text{CI} \\ \\ \text{N} \\ \text{N} \\ \text{O}_2\text{N} \\ \text{O}_2\text{N}$$

Into a 100-mL round-bottom flask, was placed a solution of 4-chloro-3-[6-nitro-[1,3]oxazolo[4,5-b]pyridin-2-yl]aniline (I-13) (300 mg, 1.03 mmol, 1.00 equiv), triphosgene (246 mg, 0.83 mmol, 0.80 equiv), triethylamine (627 mg, 6.20 mmol, 6.00 equiv), pyrrolidine (73.5 mg, 1.03 mmol, 1.00 equiv) in dichloromethane (15 mL). The resulting solution was stirred for 10 min at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/ethyl acetate (1:1). The collected fractions were combined and concentrated under vacuum. This resulted in 300 mg (75%) of N-(4-chloro-3-[6-nitro-[1,3]oxazolo[4,5-b]pyridin-2-yl]phenyl)pyrrolidine-1-carboxamide (1-18) as a yellow solid

Synthesis of I-19

$$O_2N$$
 O_2N
 O_2N

Into a 100-mL round-bottom flask, was placed a solution of N-(4-chloro-3-[6-nitro-[1,3]oxazolo[4,5-b]pyridin-2-yl] phenyl)pyrrolidine-1-carboxamide (1-18) (300 mg, 0.77 mmol, 1.00 equiv), $SnCl_22H_2O$ (877 mg, 3.89 mmol, 5.02 equiv) in ethanol (15 mL). The resulting solution was stirred for 30 min at 80° C. The resulting mixture was concentrated

55

73

under vacuum. The residue was dissolved in 50 mL of $\rm H_2O$. The solids were collected by filtration. The solid was dried in an oven under reduced pressure. This resulted in 200 mg (72%) of N-(3-[6-amino-[1,3]oxazolo[4,5-b]pyridin-2-yl]-4-chlorophenyl)pyrrolidine-1-carboxamide (I-19) as a yellow solid.

Example 6

Synthesis of 2-(5-amino-2-chlorophenyl)-1H-imidazo[4,5-b]pyridin-6-amine (I-20)

In a 20 mL vial was transferred the amine starting material 1-6 (100 mg, 0.345 mmol) in EtOAC (Volume: 6 mL) to give $_{35}$ a yellow solution. To the reaction mixture was added the Tin Chloride dihydrate (195 mg, 0.863 mmols, 2.5 eq). The reaction mixture was heated at $_{70}$ ° C. for 1 hr. The reaction mixture was checked via LCMS the next day, looked for the desired mass, found 260, M+H). The reaction mixture was quenched with ice-cold sodium bicarbonate and extracted with ethyl acetate (3×50 mL).

The crude was at this point injected into the silica gel column and eluted with MeOH/DCM (0-10 to obtain desired product I-20.

Synthesis of Final Compounds

Example 7

Synthesis of N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-methylfuran-2-carboxamide (Compound 291

74

Compound 29 was synthesized using the protocol described in Example 1 for the synthesis of Intermediate 1-1 using 5-methylfuran-2-carbonyl chloride instead.

Example 8

Synthesis of N-(4-chloro-3-(6-nitro-1H-imidazo[4,5-b]pyridin-2-yl)phenyl)furan-2-carboxamide (8)

$$\bigcup_{O} \bigcup_{H} \bigcup_{N} \bigcup_{N$$

The synthesis of compound 8 is described in the synthesis of I-3.

Example 9

Synthesis of Propan-2-yl N-[2-(2-chloro-5-{[(propan-2-yloxy)carbonyl]amino}phenyl)-1H-imidazo[4, 5-b]pyridin-6-yl]carbamate (Compound 4)

In a 20 mL vial was transferred the amine starting material Mishrpr3-001-exp-015 (50 mg, 0.193 mmol) (50 mg, 0.193 mmol) in Pyridine (Volume: 5 mL) to give a yellow solution. The reaction mixture was cooled down to 0° C. and was added the 1 molar solution of Isopropyl chloroformate (47.2 mg, 0.385 mmol) exactly 2 equivalent and stirred for 1 hr. The reaction mixture was checked via LCMS, looked for the desired mass (M+H, 432), found the right peak. Quenched with water and was then removed all solvents under vacuo. Checked again via LCMS and found the desired mass of M+H (432). The reaction mixture was then injected into silica gel

30

50

55

column and purified via ISCO (0-100%) (Ethyl acetate Hexane), the compound comes out at 60-80% EtOACHex.

Example 10

Synthesis of N-(4-chloro-3-(6-isobutyramido-1H-imidazo[4,5-b]pyridin-2-yl)phenyl)furan-2-carboxamide (Compound 10)

Procedure: The 6-amino imidazopyridine (50 mg) was placed in DMF with EDCI.HCl (1.5 eq), HOBT (1.5 eq), DIEA (2 eq) and ispropylcarboxylic acid (1.5 eq). The resulting mixture was stirred overnight at room temperature. 35 AcOEt was added and the mixture washed with water. The organic phase were dried over MgSO4, filtered and concentrated. Isco purification (Hexane/AcOEt) gave 24 mg of the desired product.

 1H NMR (400 MHz, DMSO) δ 10.53 (s, 1H), 10.17 (s 1H), 40 8.61-8.35 (m, 3H), 8.06-7.89 (m, 2H), 7.65 (d, J=8.8, 1H), 7.40 (d, J=3.2, 1H), 6.73 (dd, J=1.7, 3.5, 1H), 2.72-2.57 (m, 1H), 1.15 (d, J=6.8, 6H). M/Z=424.1 (M+1). Syntheses of Compounds 18, 35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71 and 72. 45 Compounds 18, 35 to 46, 55 to 57, 62 to 67, and 70 to 72 were synthesized, using the appropriate carboxylic acids, by the above procedure for the synthesis of Compound 10.

Example 11

Synthesis of N-(2-(2-chloro-5-(furan-2-carboxa-mido)phenyl)-1H-imidazo[4,5-b]pyridin-6-pyrroli-dine-1-carboxamide (Compound 12)

In a 20 mL vial was transferred N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)furan-2-carboxamide (1-1) (20 mg, 0.056 mmol) in DMF (2 mL), and pyridine (2 drops) was added. The reaction mixture was stirred at 0° C. for ten minutes and then pyrrolidine-1-carbonyl chloride (250 μL , 3 mmols, 54 eq) was added. The brown reaction mixture was stirred at room temperature for 12 hrs. Checked via LCMS for the desired peak and found M+H (451). The reaction mixture was then quenched with solid sodium carbonate to neutralize the excess acid chloride and to make the solution basic (pH 8-9). Extracted with ethyl acetate (3×5 mL), combined all organics and dried over sodium sulfate, combined and dried under vacuo. Purified via mass triggered preparative HPLC, combined the pure fractions, removed solvents and treated carbonate resin, to get a free base of compound 12.

Example 12

Synthesis of N-(4-chloro-3-(6-(3-isopropylureido)-1H-imidazo[4,5-b]pyridin-2-yl)phenyl)furan-2-car-boxamide (Compound 24)

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\$$

In a 20 mL vial was transferred N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)furan-2-carboxamide I-1 (15 mg, 0.042 mmols) in DMF (2 mL), and the 2-isocyanatopropane (7 mg, 0.0.084 mmols, 2 eq) was added. The yellow reaction mixture was stirred at room temperature for 12 hrs. Checked via LCMS for the desired peak and found M+H (439). The reaction mixture was purified via preparative HPLC to isolate desired product (Compound 24). Yielded 7.2 mg, 0.016 mmols, 39%) of the desired compound.

Synthesis of Compound 21

Compound 21 was synthesized using the protocol as described for the synthesis of Compound 24 using the appropriate isocyanate.

Example 13

Synthesis of tert-butyl (3-((2-(2-chloro-5-(5-fluoro-furan-2-carboxamido)phenyl)-1H-imidazo[4,5-b] pyridin-6-yl)amino)-3-oxopropyl)carbamate (Compound 68) and N-(3-(6-(3-aminopropanamido)-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-fluorofuran-2-carboxamide (Compound 73)

Synthesis of Compound 68

In a 40 mL vial N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-fluorofuran-2-carboxamide (1-9) (20 mg, 0.054 mmol) was dissolved in DMF (Volume: 3 mL) to give a tan solution. The N-Boc-propanoic acid (10.18 mg, 0.054 mmol) was then added to the reaction mixture followed by HATU (20.46 mg, 0.054 mmol) and (iPr)₂ NEt (0.023 mL, 0.134 mmol). The reaction was stirred at rt for 4 hrs. The reaction was monitored by LCMS which indicated the reaction was complete with a new peak of desired mass was observed (M+H=543). The reaction mixture was quenched with water and extracted with ethyl acetate (3×5 mL). Combined all organics, dried over sodium sulfate and concentrated under reduce pressure. The crude reaction purified by reverse phase HPLC yield the desired product. The TFA salt was neutralized to a free base by a HCO3 column.

Syntheses of Compounds 1, 5, 14, 18, 19, 22, 25, 26, 28, 32, 33, and 34

Following the above protocol for the synthesis of Compound 68, the cited compounds were synthesized using the appropriate carboxylic acid with Boc protection if required.

78

Synthesis of Compound 73

In a 40 mL vial was added Compound 68 (16 mg, 0.029 mmol) and added TFA/DCM (1:1) 4 mL). The reaction was stirred at room temperature for 0.5 hrs. The reaction was monitored by LCMS which indicated the reaction was complete with a new peak after the desired mass was observed (M+H=443). Removed all solvents and the reaction mixture was redissolved in MeOH (2 mL). The reaction mixture was then purified by reverse phase HPLC and purified compound was then made a free base by treating with MP-bicarbonate resin (100 mg).

Syntheses of Compounds 26, 32, 33, 34, 46, and 62:

The Boc protecting group on the nitrogen was removed according to protocol for the synthesis of Compound 73 for the above cited compounds to yield the desired product.

Example 14

Synthesis of isopropyl(2-(2-chloro-5-(5-fluorofuran-2-carboxamido)phenyl)-1H-imidazo[4,5-b]pyridin-6yl)carbamate (Compound 2)

Procedure: In a 20 mL vial was transferred N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)furan-2carboxamide I-1 (80 mg, 0.225 mmol) in DMF (4 mL) followed by addition of pyridine (2 drops), and the reaction mixture was stirred at 0° C. for 10 minutes. At this point was added isopropyl carbonochloridate (1 M solution in toluene, 1.45 mmols, 6.4 eq). The reaction mixture was stirred overnight while slowly warming up to room temperature. Checked via LCMS for the desired peak. Found M+H (440). The reaction mixture was then quenched with saturated sodium carbonate solution to neutralize the extra acid chloride and to make the solution basic (pH 8-9). Extracted with ethyl acetate (3×10 mL), combined all organics and dried over sodium sulfate. Filtered and dried under vacuo. Purified via ISCO column chromatography using (0-100 EtOAC/ Hex). Isolated 53 mg, 0.119 mmols, 53% of the desired compound.

Synthesis of Compounds 3, 6, 7, 9, 17, 48, 61, 75, and 78

Following the above protocol for the synthesis of Compound 2, the cited compounds were synthesized using the appropriate carbonochloridates.

Example 15

Synthesis of 2-amino-2-methylpropyl (2-(2-chloro-5-(furan-2-carboxamido)phenyl)-1H-imidazo[4,5-b] pyridin-6-yl)carbamate (Compound 23)

In a 20 mL vial was transferred N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)furan-2-carboxamide I-1 (10 mg, 0.028 mmol) in dry DMF (3 mL), and the tert-butyl (2-methyl-1-(((4-nitrophenoxy)carbonyl)oxy)propan-2-yl)carbamate (15 mg, 0.042 mmols, 1.5 eq) was added. To this was then added at 0° C. DIEA (9 mg, 0.07 mmols, 2.5 eq). The bright yellow reaction mixture was stirred at room 35 temperature overnight. Checked via LCMS for the desired peak and found M+H (569). The solvents were removed under vacuo and extracted the organics from water with ethyl acetate (3×5 mL). The organics were combined, dried over sodium sulfate, removed solvents and was then re-dissolved 40 with 2 mL of TFA/DCM (1:1) and stirred at room temperature fort hr. Checked for the desired peak and fund M+H=469. The solvents were removed once again under vacuo and the dark brown reaction mixture was then purified via preparative

HPLC (Acetonitrile/water). The desired fractions were collected, solvents were removed, by treated with carbonate based resins to make a free base. Isolated 1 mg of the desired compound (23) as a white solid.

Synthesis of Compound 15 and 16

Compound 15 and 16 were similarly synthesized using the protocol described above for the synthesis of 23 using the appropriate nitrophenylcarbonate.

Example 16

Synthesis of isopropyl(2-(2-chloro-5-(5-methoxyfu-ran-2-carboxamido)phenyl)-1H-imidazo[4,5-b]pyridin-6-yl)carbamate (Compound 39)

81

-continued

In a 20 mL vial was transferred N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-fluorofuran-2carboxamide (1-9) (60 mg, 0.161 mmol) in pyridine (2 mL), and the isopropyl carbonochloridate (1M solution, 0.241 mmols, 1.5 eq) was added. The brown reaction mixture was stirred at room temperature for 12 hrs. Checked via LCMS for the desired peak and found M+H (544) which seemed to be 20 isopropyl 2-(2-chloro-5-(5-fluorofuran-2-carboxamido)phenyl)-6-((isopropoxycarbonyl)amino)-1H-imidazo[4,5-b]pyridine-1-carboxylate. Removed all solvents under vacuo and the reaction mixture was redissolved in MeOH (2 mL), and added potassium carbonate (55 mg, 0.402 mmols, 2.5 eq). 25 The reaction mixture was heated at 60 C for 1 hr, checked via LCMS once more and found the M+H=470 as the only peak. The reaction mixture was filtered and the methanolic solution was then injected into the mass triggered HPLC to isolate the desired compound, treated with carbonate based resin and isolated the free base of Compound 39.

Example 17

Synthesis of isopropyl(2-(2-chloro-5-(5-fluorofuran-2-carboxamido)phenyl)-1H-imidazo[4,5-b]pyridin-6-yl)carbamate (Compound 47)

82

The 6-amino imidazopyridine 1-9 (900 mg) was placed in pyridine at 0° C. and isopropyl chloroformate (1M in toluene, 1 eq) was added dropwise. Batches of $100 \,\mu$ l of chloroformate were added until no starting material was detected by LC-MS. The pyridine was evaporated and the residue was purified by ISCO (gradient AcOEt/Hexane) to yield the desired product as an off white powder (360 mg).

Synthesis of Compounds 53 and 54

Compounds 53 and 54 were synthesized follow the procedure in the synthesis of Compound 47 using the appropriate chloroformate.

Example 18

Synthesis of 1-methylcyclopropyl (2-(2-chloro-5-(furan-2-carboxamido)phenyl)-1H-imidazo[4,5-b] pyridin-6-yl)carbamate (Compound 49)

$$\begin{array}{c|c} O \\ NH \\ NH \\ NH_2 \end{array}$$

In a 4 ml vidal was added I-1 (40 mg, 0.113 mmol) and DIEA (0.030 ml, 0.170 mmol) in DMF (Volume: 1 ml). 1-methylcyclopropyl (4-nitrophenyl)carbonate (32.2 mg, 0.136 mmol) was added. The mixture was stirred overnight. The reaction monitored was LCMS which indicated the reaction was complete with a new peak was observed. The reaction mixture was diluted with AcOEt. washed with water. AcOEt was evaporated and treated with MeOH and K2CO3 (excess) and heated at 60° C. for 1 hr.

MeOH was evaporated Removed all solvents and the reaction mixture was redissolved in MeOH (2 mL). The reaction mixture was then purified by reverse phase HPLC and purified compound was then made a free base by treating with MP-bicarbonate resin (100 mg).

Example 19

Synthesis N-(3-(6-((3-aminopropyl)amino)-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-fluorofuran-2-carboxamide (Compound 69)

Synthesis of 69-1

In a 40 mL vial N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-fluorofuran-2-carboxamide (1-9) (30 mg, 0.081 mmol)) was dissolved in EtOH (volume: 3 mL) to give a tan solution. The aldehyde (20.97 mg, 0.121 mmol) 60 was then added to the reaction mixture followed by sodium tri-acetoxyborohydride (42.8 mg, 0.202 mmol). The reaction was stirred at 60° C. for 2 hrs. The reaction was monitored was LCMS which indicated the reaction was complete with a new peak of desired mass was observed (M+H=529). The 65 reaction mixture was quenched with water and extracted with ethyl acetate (3×5 mL). Combined all organics, dried over

sodium sulfate and concentrated under reduce pressure. The crude reaction purified by reverse phase HPLC yield desired product.

Synthesis of Compound 69

In a 40 mL vial was added 69-1 (20 mg, 0.038 mmol) and added TFA/DCM (1:1) 4 mL). The reaction was stirred at room temperature for 0.5 hrs. The reaction was monitored was LCMS which indicated the reaction was complete with a new peak of desired mass was observed (M+H=429). Removed all solvents and the reaction mixture was redissolved in MeOH (2 mL). The reaction mixture was then purified by reverse phase HPLC and purified compound was then made a free base by treating with MP-bicarbonate resin (100 mg). M/Z=429.0 (M+1). RT=0.57 min Syntheses of Compounds 11, 13, 27, 30 and 31

Compounds 11, 13, 27, 30 and 31 were synthesized following the protocol used in the synthesis of Compound 69 using the appropriate aldehydes.

Example 20

Synthesis of (EZ)—N-(4-chloro-3-(6-(((dimethylamino)methylene)amino)-1H-imidazo[4,5-b]pyridin-2-yl)phenyl)furan-2-carboxamide (Compound 50)

In a 4 ml vidal was added I-1 (40 mg, 0.113 mmol) and DIEA (0.030 ml, 0.170 mmol) in DMF (Volume: 1 ml). Mesyl chloride (10.54 μ l, 0.136 mmol was added. The mixture was stirred for one hour. The reaction was monitored was LCMS which indicated the reaction was complete with a new peak was observed. The reaction mixture was diluted with AcOEt and washed with water. AcOEt was evaporated and treated with MeOH and K_2CO_3 (excess) and heated at 60° C. for 1 hr. MeOH was evaporated. Removed all solvents and the reac-

50-1

45

50

tion mixture was redissolved in MeOH (2 mL). The reaction mixture was then purified by reverse phase HPLC. The main peak was collected (M+23=mass of the desired compound), corresponding to the imine of DMF. The purified compound was then made a free base by treating with MP-bicarbonate resin (100 mg).

Example 21

Synthesis of N-(4-chloro-3-(6-(methylsulfonamido)-1H-imidazo[4,5-b]pyridin-2-yl)phenyl)methane-sulfonamide (58)

Synthesis of Compound 58

Compound 58 was synthesized using 1-20 and methyl sulfonylchloride using a protocol described in the synthesis 40 of Compound 77.

Synthesis of Compound 59

Compound 59 was synthesis following the method described in the synthesis of Compound 77 using isopropyl sulfonylchloride.

Example 22

Synthesis of N-(4-chloro-3-(6-formamido-1H-imidazo[4,5-b]pyridin-2-yl)phenyl)-5-fluorofuran-2-carboxamide (Compound 74)

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

-continued
$$N = 0$$
 $N = 0$
 N

In a 10 ml vial, acetic anhydride (250 μ L) and formic acid (100 μ L) are stirred at 55° C. for 2 h. The mixture is cooled to room temperature before addition of 1-9 (2.5 mg, 5.63 μ mol, in diethylether (10 mL). DMF was added to help solubilize the mixture and stirred overnight at room temperature. The pyridine was evaporated and the residue was purified by ISCO (gradient MeOH/CH2Cl₂) to yield the desired product . M/Z=400 (M+1)

Example 23

Synthesis of isopropyl(2-(2-chloro-5-(pyrrolidine-1-carboxamido)phenyl)oxazolo[4,5-b]pyridin-6-yl) carbamate (Compound 75)

Into a 50-mL round-bottom flask, was placed a solution of N-(3-[6-amino-[1,3]oxazolo[4,5-b]pyridin-2-yl]-4-chlorophenyl)pyrrolidine-1-carboxamide (100 mg, 0.28 mmol, 1.00 equiv), propan-2-yl chloroformate (68.3 mg, 0.56 mmol, 1.99 equiv), pyridine (111 mg, 1.40 mmol, 5.02 equiv) in ethylene glycol dimethyl ether (15 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (10:1). The collected fractions were combined and concentrated under vacuum. This resulted in 60.8 mg (49%) of propan-2-yl N-[2-(2-chloro-5-[[(pyrrolidin-1-yl)carbonyl]amino]phenyl)-[1,3]oxazolo[4,5-b]pyridin-6-yl]carbamate (75) as a yellow solid.

Example 24

Synthesis of propan-2-yl N-[2-[2-chloro-5-(furan-2-amido)phenyl]-[1,3]oxazolo[4,5-b]pyridin-6-yl]car-bamate (Compound 76)

Into a 50-mL round-bottom flask, was placed a solution of N-(3-[6-amino-[1,3]oxazolo[4,5-b]pyridin-2-yl]-4-chlorophenyl)furan-2-carboxamide (1-15) (100 mg, 0.28 mmol, 1.00 equiv), triethylamine (85 mg, 0.84 mmol, 2.98 equiv), chloro(propan-2-yloxy)methanone (70 mg, 0.57 mmol, 2.03 equiv) in dichloromethane (15 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied 30 onto a silica gel column with dichloromethane/methanol (10: 1). This resulted in 10 mg (8%) of propan-2-yl N-[2-[2-chloro-5-(furan-2-amido)phenyl]-[1,3]oxazolo[4,5-b]pyridin-6-yl]carbamate (76) as a yellow solid.

Example 25

Synthesis of 5-fluoro-N-(3-(6-(1-methylethylsulfonamido)-1H-imidazo[4,5-b]pyridin-2-yl)phenyl) furan-2-carboxamide (77)

$$\begin{array}{c|c} O & & & & & \\ \hline \\ N & & & & \\ N & & & \\ \end{array}$$

I-9

-continued

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

In a 20 mL vial in Pyridine (Volume: 2 mL), was transferred the amine starting material I-9 (20 mg, 0.059 mmol)) to give a yellow solution. The reaction mixture was cooled down to 0° C. and was added isopropyl-sulfonyl chloride (8.46 mg, 0.059 mmol) and stirred for an hour. The reaction mixture was checked via LCMS after an hr, and found the desired mass (M+H=444). The reaction mixture was quenched with a drop of water and then was diluted with methanol. The reaction mixture was then purified by reverse phase HPLC and purified compound was then made a free base by treating with MP-bicarbonate resin (100 mg).

Syntheses of Compounds 51 and 52

Compounds 51 and 52 were synthesized following the procedure for the synthesis of Compound 77 using the appropriate sulfonyl chloride.

Example 26

Synthesis N-(3-(6-amino-1H-imidazo[4,5-b]pyridin-2-yl)-4-chlorophenyl)-5-fluorofuran-2-carboxamide (79)

The synthesis of Compound 79 is described in the synthesis of I-9.

TABLE II

35

40

45

	INDEE II		
	Listing of the Exemplified Compounds of the Invention		
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
1	$\begin{array}{c c} & & & & \\ & &$	M/Z = 479.1 (M + 1)., RT = 2.89: Method B	

TABLE II-continued			
	Listing of the Exemplified Compounds of the Invention		
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
2	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	¹ H NMR (400 MHz, MeOD) δ 8.28 (d, J = 22.1, 2H), 8.10 (s, 1H), 7.88 (s, 1H), 7.67 (d, J = 1.0, 1H), 7.51 (d, J = 8.8, 1H), 7.24-7.16 (m, 1H), 6.56 (dd, J = 1.7, 3.5, 1H), 4.91 (dt, J = 6.2, 12.5, 1H), 1.24 (d, J = 6.2, 6H). M/Z = 440.1 (M + 1), RT = 1.54: Method A	
3	O H N N N O HN F	M/Z = 409.9(M + 1). RT = 0.77: Method A	
4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ H NMR (400 MHz, MeOD) δ 8.38 (d, J = 22.9, 2H), 7.93 (s, 1H), 7.70 (s, 1H), 7.51 (d, J = 8.8, 1H), 4.98 (ddd, J = 8.0, 14.1, 28.3, 4H), 1.40-1.13 (m, 16H). M/Z = 431.9(M + 1). RT = 3.12: Method B	
5	$\begin{array}{c c} & & & & \\ & &$	¹ H NMR (400 MHz, DMSO) δ 10.53 (s, 1H), 10.40-10.27 (m, 1H), 8.64-8.52 (m, 1H), 8.50-8.34 (m, 2H), 7.98 (s, 2H), 7.66 (s, 1H), 7.41 (s, 1H), 6.73 (s, 1H), 2.69 (s, 3H), 2.59 (s, 3H).493.1. M/Z = 492.9(M + 1). RT = 2.72: Method B	
6		¹ H NMR (400 MHz, DMSO) δ 12.82 (s, 1H), 10.52 (d, J = 6.9, 1H), 9.96 (s, 1H), 8.50-8.35 (m, 1H), 8.28 (d, J = 2.6, 1H), 8.05-7.85 (m, 2H), 7.64 (dd, J = 3.1, 8.8, 1H), 7.40 (t, J = 3.9, 1H), 6.73 (dd, J = 1.7, 3.5, 1H), 4.32-4.05 (m, 2H), 1.27 (dd, J = 9.8, 16.9, 3H). M/Z = 426.10 (M + 1). RT = 1.45: Method A	

	Listing of the Exemplified Compounds of the Invention		
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
7	O HN O HN O CI	M/Z = 526.0 (M + 1) RT = 1.9: Method A	
8		M/Z = 383.9 (M + 1). RT = 1.57: Method A	
9	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	M/Z = 412.0. (M + 1) RT = 1.37: Method A	
10	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	¹ H NMR (400 MHz, DMSO) δ 10.53 (s, 1H), 10.17 (s 1H), 8.61-8.35 (m, 3H), 8.06-7.89 (m, 2H), 7.65 (d, J = 8.8, 1H), 7.40 (d, J = 3.2, 1H), 6.73 (dd, J = 1.7, 3.5, 1H), 2.72-2.57 (m, 1H), 1.15 (d, J = 6.8, 6H). M/Z = 444.0 (M + 1). RT = 2.7: Method B	
11	HN O	M/Z = 368.0 (M + 1). RT = 1.26: Method A	

TABLE II-continued			
	Listing of the Exemplified Compounds of the Invention		
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
12	CI N H N CI N HIN O	M/Z = 451.0. (M + 1) RT = 1.36: Method A	
13	HN O	¹ H NMR (400 MHz, MeOD) δ 8.09 (s, 2H), 8.06-7.98 (m, 1H), 7.86 (dd, J = 2.5, 8.8, 2H), 7.67 (d, J = 0.9, 2H), 7.49 (d, J = 8.8, 2H), 7.26 (s, 1H), 7.20 (d, J = 2.9, 1H), 6.56 (dd, J = 1.7, 3.5, 2H), 2.96 (s, 6H) M/Z = 381.9 (M + 1). RT 1.28.	
14	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	M/Z = 438.1(M + 1). RT = 1.29: Method B	
15	ONH NH ON H ON H ON H ON H ON H ON H ON	M/Z = 569.1 (M + 1). RT = 1.72: Method A	
16	ONH NH NH ON H ON H ON H	M/Z = 541.0(M + 1). RT = 1.57: Method A	

	Listing of the Exemplified Compounds of the Invention	
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))
17	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	M/Z = 454.1 (M + 1). RT = 1.61: Method A
18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M/Z = 442.0 (M + 1). RT = 2.33: Method B
19	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	M/Z = 440.0. RT = 2.53: Method B
20	H_2N N N N N N N N N N	¹ H-NMR: (CD ₃ OD, 400 MHz): 8.16 (d, J = 2.4 Hz, 1H), 7.97-8.10 (m, 2H), 7.78 (d, J = 0.8 Hz, 1H), 7.65 (d, J = 20.0 Hz, 1H), 7.31-7.41 (m, 2H), 6.68 (dd, J = 3.6, 2.0 Hz, 1H. MS (M + H) ⁺ = 354.0. RT = 1.16: Method A
21	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	M/Z = 474.0 (M + 1). RT = 2.28: Method B

TABLE II-Continued			
	Listing of the Exemplified Compounds of the Invention		
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
22	HO $\stackrel{H}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ \stackrel	M/Z = 454.1 (M + 1). RT = 2.6: Method B	
23	$\bigcap_{O} \bigcap_{NH} \bigcap_{NH_2} \bigcap_{NH_$	M/Z = 469.0. RT = 1.25: Method A	
24	HN O	M/Z = 439.0 (M + 1). RT = 2.7: Method B	
25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M/Z = 425.9 (M + 1). RT = 2.4: Method B	
26	H_2N H_2N H_1 H_2N H_2N H_1 H_2N H_2N H_2N H_2N H_1 H_2N H_2N H_2N H_2N H_1 H_2N H_2N H_2N H_1 H_2N H_1 H_2N H_2N H_1 H	M/Z = 439.0(M + 1). RT = 1.15: Method A	

IABLE II-Continued		
Listing of the Exemplified Compounds of the Invention		
EX. No. Structure	¹ HNMR and/or mass and/or (retention time (mins))	
27 HN CI N CI N N N N HN	M/Z = 451.1 (M + 1). RT = 1.18: Method A	
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	M/Z = 565.1 (M + 1).	
H ₂ N $\stackrel{H}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{Cl}{\longrightarrow}$	M/Z = 368.0 (M + 1). RT = 1.28: Method A	
NOH HNOO	M/Z = 461.0 (M + 1). RT = 1.39: Method A	
H_2N H_2N H_1 H_2N H_1 H_2N H_1 H_2 H_2 H_1 H_2 H_2 H_1 H_2 H_2 H_3 H_4 H_1 H_2 H_3 H_4 H_5 H_5 H_7	M/Z = 425.0 (M + 1). RT = 1.18: Method A	

	Listing of the Exemplified Compounds of the Invention		
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M/Z = 465.0 (M + 1). RT = 1.98: Method B	
33	H_2N O N	M/Z = 411 (M + 1). RT = 1.12: Method A	
34	$\begin{array}{c c} H & & H & CI \\ \hline \\ HN & & N & N \\ \hline \\ \end{array}$	M/Z = 465.0. (M + 1) RT = 2.04: Method B	
35	OH HN O	M/Z = 438.1 (M + 1). RT = 1.27: Method A	
36	N HN O	M/Z = 479.2 (M + 1). RT = 1.17: Method A	

Listing of the Exemplified Compounds of the Invention		
EX. No. Structure	¹ HNMR and/or mass and/or (retention time (mins))	
F = F = 0 $F = F = 0$ $F =$	M/Z = 504.1 (M + 1). RT = 1.61: Method A	
F HN O	M/Z = 454.1 (M + 1). RT = 1.45: Method A	
39 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	M/Z = 470.1 (M + 1). RT = 1.55: Method A	
40 N N N N N N N N N N N N N	M/Z = 439.1 (M + 1). RT = 1.15: Method A	
41 N	M/Z = 447.1 (M + 1). RT = 1.39: Method A	

	Listing of the Exemplified Compounds of the Invention		
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
42	O H HN O O O O O O O O O O O O O O O O O	M/Z = 466.1 (M + 1). RT = 1.42: Method A	
43	$0 \longrightarrow H$ N	M/Z = 45210 (M + 1). RT = 1.30: Method A	
44	$\begin{array}{c c} F & & HN & \\ \hline \\ F & & \\ \hline \\ O & & \\ N & & \\ \end{array}$	M/Z = 458.1 (M + 1). RT = 1.45: Method A	
45	HN CI	M/Z = 422.2 (M + 1). RT = 1.38: Method A	
46	$\begin{array}{c} HN \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	M/Z = 465.1 (M + 1). RT = 1.16: Method A	

EX.

No.

48

Structure

TABLE II-continued

Listing of the Exemplified Compounds of the Invention

¹ HNMR and/or mass and/or
(retention time (mins))

 1 H NMR (400 MHz, DMSO) δ 10.51 (s, 1H), 9.86 (s, 1H), 8.34 (d, J = 63.6, 3H), 7.97 (dd, J = 2.6, 8.8, 1H), 7.64 (d, J = 8.8, 1H), 7.48 (t, J = 3.6, 1H), 6.13 (dd, J = 3.7, 7.0, 1H), 4.94 (dt, J = 6.2, 12.5, 1H), 1.27 (t, J = 13.2, 6H). 19 F NMR (376 MHz, DMSO) δ-109.96 (s, 1F). M/Z = 458.11(M + 1). RT = 1.55: Method A

M/Z = 465.1 (M + 1).RT = 1.58: Method A

M/Z = 452.1 (M + 1).RT = 1.50: Method A

 $\label{eq:hammar} ^{1}H\ NMR\ (400\ MHz,DMSO)\ \delta\ 10.62-\\ 10.19\ (m,2H),8.27\ (s,1H),8.01-\\ 7.85\ (m,3H),7.77\ (s,1H),7.52\ (d,J=8.8,1H),7.39\ (s,1H),7.33\ (d,J=3.6,1H),6.66\ (dd,J=1.7,3.5,1H),2.92\ (s,6H)\\ M/Z=409.2\ (M+1)\\ RT=1.17:\ Method\ A$

M/Z = 461.0 (M + 1).RT = 1.40: Method A

Listing of the Exemplified Compounds of the I	invention
EX. No. Structure	¹ HNMR and/or mass and/or (retention time (mins))
52 O N N N N N N N N N N N N	M/Z = 447.1 (M + 1). RT = 1.30: Method A
$F \longrightarrow O \longrightarrow H$ $F \longrightarrow O \longrightarrow H$ $HN \longrightarrow O$ $O \longrightarrow H$ $HN \longrightarrow O$	M/Z = 444.1 (M + 1). RT = 1.39: Method A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ H NMR (400 MHz, DMSO) δ 9.87-9.72 (m, 1H), 8.42 (s, 1H), 8.39-8.31 (m, 1H), 8.26-8.13 (m, 1H), 8.06 (s, 1H), 7.71 (s, 1H), 7.43 (d, J = 8.8, 1H), 4.87 (s, 1H), 1.79 (s, 3H), 1.22 (d, J = 6.2, 4H). M/Z = 443.1 (M + 1). RT = 1.44: Method A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 H NMR (400 MHz, DMSO) δ 10.44 (s, 1H), 9.94 (s, 1H), 8.34 (d, J = 33.5, 3H), 7.98-7.84 (m, 2H), 7.56 (d, J = 8.8, 1H), 7.33 (d, J = 3.5, 1H), 6.66 (dd, J = 1.7, 3.5, 1H), 3.34-3.05 (m, 1H), 2.29-2.14 (m, 2H), 2.07 (d, J = 8.6, 2H), 1.90 (d, J = 9.0, 1H), 1.77 (s, 1H). M/Z = 436.0 (M + 1). RT = 1.44: Method A
$\begin{array}{c} 56 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	¹ H NMR (400 MHz, DMSO) δ 10.42 (s, 2H), 9.90 (s, 1H), 8.31 (d, J = 14.0, 2H), 7.90 (s, 2H), 7.53 (d, J = 8.8, 1H), 7.34 (d, J = 2.9, 1H), 6.66 (dd, J = 1.7, 3.5, 1H), 3.15 (m, 1H), 2.04-1.86 (m, 2H), 1.87 (d, J = 8.9, 2H), 1.13 (s, 2H), 1.02 (s, 2H). M/Z = 464.0 (M + 1). RT = 1.61: Method A

Listing of the Exemplified Compounds of the Invention			
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
57	$\begin{array}{c} F \\ \hline \\ F \\ \hline \\ O \\ \hline \\ O \\ \hline \\ N \\ \hline \\ O \\ O$	¹ H NMR (400 MHz, DMSO) δ 10.4 (s, 1H), 10.31 (s, 1H), 8.34 (m, 3H), 7.91 (dd, J = 3.8, 7.7, 2H), 7.56 (d, J = 8.8, 1H), 7.33 (d, J = 3.6, 1H), 6.66 (dd, J = 1.7, 3.5, 1H), 3.09 (s, 2H), 2.75 (s, 4H). M/Z = 472.0(M + 1). RT = 1.49: Method A	
58	$ \begin{array}{c c} O & & & \\ N & & $	M/Z = 415.9. RT = 1.18: Method A	
59	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	M/Z = 472.0. (M + 1) RT = 1.42	
60	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	M/Z = 485.10 (M + 1). RT = 1.52: Method A	
61	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	M/Z = 451.0 (M + 1). RT = 1.51: Method A	

TABLE II-continued	114
Listing of the Exemplified Compounds of the Invention	
EX. No. Structure	¹ HNMR and/or mass and/or (retention time (mins))
62 HN CI	M/Z = 437.0 (M + 1). RT = 1.15: Method A
$\begin{array}{c} & & & & \\ & & & & \\ & &$	¹ H NMR (400 MHz, DMSO) δ 10.42 (s, 1H), 9.84 (s, 1H), 8.35 (s, 1H), 8.28 (s, 2H), 7.89 (dd, J = 2.4, 8.8, 2H), 7.52 (d, J = 8.8, 1H), 7.40 (t, J = 5.9, 1H), 7.34 (dd, J = 0.5, 3.6, 1H), 6.65 (dd, J = 1.7, 3.5, 1H), 3.56-3.15 (m, 2H), 1.35 (s, 9H), 1.04 (s, 2H), 0.79 (s, 2H). M/Z = 551.1 (M + 1). RT = 1.63: Method A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ H NMR (400 MHz, DMSO) δ 11.10 (s, 1H), 10.42 (s, 1H), 8.30 (s, 2H), 7.89 (dd, J = 1.8, 8.2, 2H), 7.52 (d, J = 8.8, 1H), 7.40-7.27 (m, 2H), 6.66 (dd, J = 1.7, 3.5, 1H), 1.47 1.11 (m, 4H). M/Z = 464.9 (M + 1) RT = 1.28: Method A
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	¹ H NMR (400 MHz, DMSO) δ 10.40 (s, 1H), 8.47-8.09 (m, 3H), 7.88 (dd, J = 2.6, 8.8, 1H), 7.55 (d, J = 8.8, 1H), 7.38 (t, J = 3.6, 1H), 6.05 (dd, J = 3.7, 7.0, 1H), 1.76 (s, 1H), 0.77 (t, J = 6.3, 4H). M/Z = 439.9 (M + 1) RT = 0.79: Method A
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	¹ H NMR (400 MHz, DMSO) δ 10.44-10.24 (m, 1H), 9.92-9.74 (m, 1H), 8.28 (d, J = 2.7, 1H), 8.19 (s, 1H), 8.16-8.11 (m, 1H), 7.81 (d, J = 8.8, 1H), 7.44 (d, J = 8.7, 1H), 7.40 (t, J = 3.6, 1H), 6.03 (dd, J = 3.7, 7.0, 1H), 3.66-3.39 (m, 4H), 2.35-2.22 (m, 6H), 1.80-1.62 (m, 2H). M/Z = 527.0 (M + 1) RT = 0.59: Method A

	TABLE II-continued				
	Listing of the Exemplified Compounds of the Invention				
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))			
67	N N N CI N N N N N N N N N N N N N N N N	¹ H NMR (400 MHz, DMSO) δ 10.47-10.32 (m, 1H), 9.95-9.79 (m, 1H), 8.53-8.36 (m, 1H), 8.25 (s, 2H), 7.94-7.80 (m, 1H), 7.61-7.48 (m, 1H), 7.39 (t, J = 3.6, 2H), 6.05 (dd, J = 3.7, 7.0, 1H), 3.32 (d, J = 6.3, 2H), 1.35 (s, 9H), 1.04 (s, 2H), 0.79 (s, 2H).			
68	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	M/Z = 543.0 (M + 1) RT = 0.87: Method A			
69	H_2N N N N N N N N N N	M/Z = 429.0 (M + 1) RT = 0.57: Method A			
70	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	¹ H NMR (400 MHz, DMSO) δ 10.47-10.28 (m, 1H), 8.29 (d, J = 26.4, 2H), 8.07 (s, 1H), 7.93-7.71 (m, 1H), 7.65-7.32 (m, 2H), 6.05 (dd, J = 3.7, 7.1, 1H), 1.64 (dd, J = 5.0, 4H). M/Z = 464.9 (M + 1) RT = 0.8: Method A			
71	F F O N N N O HN O	¹ H NMR (400 MHz, DMSO) δ 10.44-10.27 (m, 1H), 10.02-9.86 (m, 1H), 8.33 (s, 1H), 8.27 (s, 1H), 8.13 (s, 1H), 7.84 (d, J = 11.4, 1H), 7.48 (d, J = 8.8, 1H), 7.39 (t, J = 3.6, 1H), 6.04 (dd, J = 3.7, 7.0, 1H), 2.64 (s, 2H), 2.43 (m, 2H), 2.09-1.75 (m, 2H). M/Z = 521.9 (M + 1) RT = 0.95: Method A			

Listing of the Exemplified Compounds of the Invention			
EX. No.	Structure	¹ HNMR and/or mass and/or (retention time (mins))	
72	$\bigcap_{N} \bigcap_{N} \bigcap_{N$	¹ H NMR (400 MHz, DMSO) δ 10.43 (m, 2H), 8.36 (m, 2H), 7.88 (m, 2H), 7.57 (d, J = 8.8, 1H), 7.39 (m, 2H), 6.06 (dd, J = 3.7, 7.0, 1H), 3.63-3.43 (m, 4H), 2.59 (d, J = 6.8, 2H), 2.48 (m, 2H), 2.36 (m, 4H). M/Z = 513.0 (M + 1) RT = 0.59: Method A	
73	$\begin{array}{c} O \\ H_2N \end{array} \begin{array}{c} N \\ H \end{array} \begin{array}{c} N \\ H \end{array} \begin{array}{c} N \\ H \end{array} \begin{array}{c} O \\ H \end{array} $	M/Z = 442.0 (M + 1). RT = 0.58: Method A	
74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M/Z = 400 (M + 1)	
75	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	¹ H NMR (300MHz, CD ₃ OD): δ 8.46-8.51(m, 2H), 8.33(d, J = 2.7Hz, 1H), 7.71-7.75(m, 1H), 7.51-7.54(m, 1H), 5.00-5.08(m, 1H), 3.45-3.52(m, 4H), 1.97-2.04(m, 4H), 1.37(d, J = 8.7Hz, 6H). M/Z = 444 (M + 1).	
76		¹ H NMR (300MHz, CD ₃ OD); δ 8.63-8.64 (m, 1H), 8.50-8.58(m, 2H), 8.01-8.05(m, 1H), 7.81(s, 1H), 7.66-7.69(m, 1H), 7.35-7.36(m, 1H), 6.69-6.71(m, 1H), 3.33-3.35(m, 1H), 1.37(d, J = 6.3Hz, 6H). M/Z = 441 (M + 1)	

Listing of the Exemplified Compounds of the Invention				
EX. No. Structure	¹ HNMR and/or mass and/or (retention time (mins))			
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	M/Z = 444.1 (M + 1). RT = 2.7: Method A			
78 $ \downarrow_{0} \qquad \downarrow_{N} \qquad $	M/Z = 424.0 (M + 1). RT = 2.95: Method A			
79 $H_{2N} \longrightarrow H$ $H_{2N} \longrightarrow H$	M/Z = 338.0 (M + 1). RT = 0.58: Method A			

60

It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference for all purposes.

We claim:

1. A compound of Formula I:

$$\begin{array}{c} R_1 \\ L_1 - NH \\ \hline \\ R_3 \end{array}$$

or a pharmaceutical acceptable salt, or a stereoisomer thereof; wherein $\,$

X is O or NR₄, wherein R₄ is selected from hydrogen, C_{1-4} alkyl, halo C_{1-4} alkyl, and —C(O)R₁₀, wherein R₁₀ is 65 hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, amino, C_{1-4} alkylamino, C_{3-6} cycloalkyl and C_{4-6} heterocycloalkyl, each of which

is independently optionally substituted by 1-2 substituents independently selected from hydroxyl, halo and $C_{1.4}$ alkyl;

 L_1 is -C(O) or $-S(O)_2$;

 R_1 is selected from nitro, $C_{1.4}$ alkyl, $C_{1.6}$ alkoxy, amino, $C_{6.3}$ heteroaryl, $C_{3.6}$ cycloalkyl and $C_{4.6}$ heterocycloalkyl, each of which is optionally substituted by 1-2 substituent independently selected from halo, cyano, amino, $C_{1.4}$ alkyl, halo $C_{1.4}$ alkyl, $C_{1.6}$ alkoxy, and $C_{1.4}$ alkylcarbonyl; or —NHL $_1R_1$ is nitro;

 $\rm R_3$ is selected from hydrogen, halo, cyano, $\rm C_{1-4}$ alkyl and halo $\rm C_{1-4}$ alkyl;

 L_2 is selected from a bond, -C(O) and $-S(O)_2$;

 R_2 is selected from hydrogen, C_{1-6} alkyl, C_{1-4} alkoxy, amino, C_{3-6} cycloalkyl, C_{4-6} heterocycloalkyl, and C_{5-6} heteroaryl; wherein

the C_{1-6} alkyl, C_{1-4} alkoxy, C_{3-6} cycloalkyl, and amino of R_2 are each optionally substituted by 1-2 substituents independently selected from halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, $-NR_{9a}R_{9b}$, C_{3-6} cycloalkyl, C_{5-6} heterocycloalkyl, phenyl and C_{5-6} heteroaryl, wherein R_{9a} is hydrogen or C_{1-4} alkyl and R_{9b} is selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkylcarbonyl and C_{1-4} alkoxycarbonyl, and the C_{5-6} heterocycloalkyl, phenyl or C_{5-6} heteroaryl is further optionally substituted by 1-2 substituents independently selected from hydroxyl, C_{1-4} alkyl and C_{1-4} alkoxycarbonyl;

the C_{5-6} heteroaryl of R_2 is optionally substituted with 1-2 substituents selected from hydroxy, C_{1-4} alkyl, and C_{1-4} alkoxycarbonyl;

the C $_{3-6}$ cycloalkyl or C $_{4-6}$ heterocycloalkyl of R $_2$ are each independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, C $_{1-4}$ alkyl, haloC $_{1-4}$ alkyl, C $_{1-4}$ alkoxylC $_{1-4}$ alkyl, aminocarbonyl, C $_{1-4}$ alkoxycarbonyl, and C $_{1-4}$ alkoxycarbonylaminoC $_{1-4}$ alkyl;

 R_5 is hydrogen or C_{1-4} alkyl;

or R_2 and R_5 together with L_2 and N to which R_2 and R_5 , respectively, attached are taken together to form a hetero C_{5-6} cycloalkyl or a hetero C_{5-6} cycloalkenyl, each of which is optionally substituted by 1 to 3 substituents independently selected from oxo, C_{1-4} alkyl, $-(CH_2)_{1-4}$ OH, $-(CH_2)_{1-4}$ NR $_a$ R $_b$, wherein R_a and R_b are each independently hydrogen, C_{1-4} alkyl or C_{3-6} cycloalkyl;

or $-N(R_5)L_2R_2$ is nitro or $-N=CHN(CH_3)_2$.

2. The compound according to claim 1, wherein X is NH. 20

3. The compound according to claim **2**, L_1 is —C(O)—

4. The compound according to claim **3**, wherein R_1 is selected from $C_{1.4}$ alkyl, $C_{1.6}$ alkoxy, amino, $C_{5.9}$ heteroaryl, $C_{3.6}$ cycloalkyl and $C_{4.6}$ heterocycloalkyl, each is optionally substituted by 1-2 substituent independently selected from hydroxyl, halo, cyano, amino, $C_{1.4}$ alkyl, halo $C_{1.4}$ alkyl, $C_{1.6}$ alkoxy, $C_{1.4}$ alkylcarbonyl, phenyl and $C_{5.6}$ heteroaryl.

5. The compound according to claim 3, wherein R_1 is selected from pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, furanyl, thiophenyl, thiazolyl, phenyl, pyrazinyl, cyclopropyl, cyclopentyl, pyrrolidinyl, and indolyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, C_{1-4} alkyl, halo C_{1-4} alkyl and C_{1-4} alkylcarbonyl.

6. The compound according to claim 4, wherein $-L_1-R_1$ is selected from $-C(O)OCH_2CH_3$, $-C(O)O(CH_2)_2OCH_3$,

7. The compound according to claim 6, wherein R_3 is chloro or fluoro.

8. The compound according to claim **7**, wherein R_5 is 50 hydrogen.

9. The compound according to claim 8, wherein R_2 is hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy, amino, C_{3-6} cycloalkyloxy, C_{3-6} cycloalkyl, C_{5-6} heterocycloalkyl, and C_{5-6} heteroaryl, wherein

the C₁₋₄alkyl, C₁₋₄alkoxy, C₃₋₆cycloalkyloxy, and amino are each optionally substituted by 1-2 substituents independently selected from halo, hydroxyl, C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxy, —NH₂, C₁₋₄alkylamino, —NHC(O)OC(CH₃)₃, pyrrolidinyl, piperidinyl, morpholinyl, phenyl and pyridinyl, wherein the pyrrolidinyl, piperidinyl, morpholinyl, phenyl or pyridinyl is each optionally substituted by halo, hydroxy, C₁₋₄alkyl, or —C(O)OC(CH₃)₃);

the C₅₋₆heteroaryl is optionally substituted with 1-2 sub- 65 stituents independently selected from hydroxyl and C₁₋₄alkyl;

the C $_{3-6}$ cycloalkyl or C $_{4-6}$ heterocycloalkyl, each of which is independently optionally substituted by 1-2 substituents independently selected from halo, cyano, hydroxy, methyl, trifluoromethyl, $-\text{CH}_2\text{OCH}_3$, $-\text{CH}_2\text{NHC}(\text{O})$ (O)C(CH $_3$) $_3$, $-\text{C}(\text{O})(\text{O})\text{C}(\text{CH}_3)_3$, and $-\text{C}(\text{O})\text{NH}_2$.

10. The compound according to claim 8, wherein $-L_2$ - R_2 is selected from $-C(O)OCH(CH_3)_2$, $-C(O)OCH_2CH_3$, $-C(O)OCH_3$,

*
$$CF_{3}$$

*
$$O$$

*

O

11. The compound according to claim 8, wherein $-L_2-R_2$ is $-C(O)OCH(CH_3)_2$.

12. The compound according to claim 1, selected from: N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}-5-methyl-1,3-thiazole-2-carboxamide:

propan-2-yl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

ethyl N-{2-[3-(5-fluorofuran-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

propan-2-yl N-[2-(2-chloro-5-{[(propan-2-yloxy)carbonyl]amino}phenyl)-1H-imidazo[4,5-b]pyridin-6-yl] carbamate:

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}-2,4-dimethyl-1,3-thiazole-5-car-boxamide;

ethyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

propan-2-yl 2-[2-chloro-5-(furan-2-amido)phenyl]-6-{[(propan-2-yloxy)carbonyl]amino}-1H-imidazo[4,5-b]pyridine-1-carboxylate;

N-(4-chloro-3-{6-nitro-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

methyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-{4-chloro-3-[6-(2-methylpropanamido)-1H-imidazo[4, 5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(methylamino)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}pyrrolidine-1-carboxamide;

N-{4-chloro-3-[6-(dimethylamino)-1H-imidazo[4,5-b] pyridin-2-yl]phenyl}furan-2-carboxamide;

20

25

40

50

123

N-{4-chloro-3-[6-(3-methylbutanamido)-1H-imidazo[4, 5-b|pyridin-2-yl]phenyl}furan-2-carboxamide;

tert-butyl N-{1-[({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)oxy]-2-methylpropan-2-yl}carbamate;

tert-butyl N-{2-[({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)oxy] ethyl\carbamate;

propan-2-yl N-{2-[2-chloro-5-(5-methylfuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-{4-chloro-3-[6-(2,3-dihydroxypropanamido)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{4-chloro-3-[6-(3-methoxypropanamido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-(3-{6-amino-1H-imidazo[4,5-b]pyridin-2-yl}-4-chlorophenyl)furan-2-carboxamide;

N-[4-chloro-3-(6-{[(pyridin-3-yl)carbamoyl]amino}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxam-

N-{4-chloro-3-[6-(3-hydroxy-2,2-dimethylpropanamido)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2carboxamide;

2-amino-2-methylpropyl N-{2-[2-chloro-5-(furan-2amido)phenyl]-1H-imidazo[4,5-b]pyridin-6yl}carbamate;

N-[4-chloro-3-(6-{[(propan-2-yl)carbamoyl]amino}-1Himidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxam-

N-{4-chloro-3-[6-(3-hydroxypropanamido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-{3-[6-(2-amino-2-methylpropanamido)-1H-imidazo[4, 5-b]pyridin-2-yl]-4-chlorophenyl}furan-2-carboxam-

N-(4-chloro-3-{6-[(piperidin-4-ylmethyl)amino]-1H-imi- 35 dazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

tert-butyl (3R)-3-[({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-

yl}carbamoylmethyl]pyrrolidine-1-carboxylate;

N-(3-{6-amino-1H-imidazo[4,5-b]pyridin-2-yl}-4-chlorophenyl)-5-methylfuran-2-carboxamide;

N-[4-chloro-3-(6-{[(2-hydroxypyridin-3-ylmethyl] amino}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

N-(3-{6-[(2-amino-2-methylpropyl)amino]-1H-imidazo [4,5-b]pyridin-2-yl}-4-chlorophenyl)furan-2-carboxa-

N-[4-chloro-3-(6-{2-[(3S)-pyrrolidin-3-yl]acetamido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

N-{3-[6-(2-aminoacetamido)-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl}furan-2-carboxamide;

N-[4-chloro-3-(6-{2-[(3R)-pyrrolidin-3-yl]acetamido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-car-

N-(4-chloro-3-{6-[(1-hydroxycyclopropane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}-1-methylpiperidine-4-carboxamide;

N-[4-chloro-3-(6-{[1-(trifluoromethyl)cyclobutane] amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

N-(4-chloro-3-{6-[(3-fluorocyclobutane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

propan-2-yl N-{2-[2-chloro-5-(5-methoxyfuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

124

N-(4-chloro-3-{6-[2-(dimethylamino)acetamido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-

N-(4-chloro-3-{6-[(1-cyanocyclopropane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-

N-[4-chloro-3-(6-{[1-(methoxymethyl)cyclopropane] amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]furan-2-carboxamide;

N-{4-chloro-3-[6-(3-methyloxetane-3-amido)-1H-imidazo[4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

N-(4-chloro-3-{6-[(2,2-difluorocyclopropane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-cyclopropaneamido-1H-imidazo[4,5-b] pyridin-2-yl}phenyl)furan-2-carboxamide;

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}piperidine-4-carboxamide;

propan-2-yl N-{2-[2-chloro-5-(5-fluorofuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

propan-2-yl N-{2-[2-chloro-5-(5-cyanofuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

1-methylcyclopropyl N-{2-[2-chloro-5-(furan-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-(4-chloro-3-{6-[(E)-[(dimethylamino)methylidene] amino]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide:

N-(4-chloro-3-{6-[(dimethylsulfamoyl)amino]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-[(methylsulfamoyl)amino]-1H-imidazo [4,5-b]pyridin-2-yl}phenyl)furan-2-carboxamide;

2-fluoroethyl N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

propan-2-yl N-(2-{2-chloro-5-[(pyrrolidin-1-yl)carbonylamino|phenyl}-1H-imidazo[4,5-b]pyridin-6-yl)carbamate:

N-(4-chloro-3-{6-cyclobutaneamido-1H-imidazo[4,5-b] pyridin-2-yl}phenyl)furan-2-carboxamide;

N-(4-chloro-3-{6-[(3,3-dimethylevelobutane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-

N-(4-chloro-3-{6-[(3,3-difluorocyclobutane)amido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)furan-2-carboxam-

N-[2-(2-chloro-5-methanesulfonamidophenyl)-1H-imidazo[4,5-b]pyridin-6-yl]methanesulfonamide;

N-{2-[2-chloro-5-(propane-2-sulfonamido)phenyl]-1Himidazo[4,5-b]pyridin-6-yl}propane-2-sulfonamide;

N-{4-chloro-3-[6-(propane-2-sulfonamido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}-5-cyanofuran-2-carboxa-

ethyl N-{2-[2-chloro-5-(5-cyanofuran-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate;

N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4, 5-b]pyridin-6-yl}azetidine-3-carboxamide;

tert-butyl N-{[1-({2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl)cyclopropyl]methyl}carbamate;

1-N-{2-[2-chloro-5-(furan-2-amido)phenyl]-1H-imidazo [4,5-b]pyridin-6-yl}cyclopropane-1,1-dicarboxamide;

N-(4-chloro-3-{6-cyclopropaneamido-1H-imidazo[4,5-b] pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide;

N-(4-chloro-3-{6-[4-(morpholin-4-yl)butanamido]-1Himidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2carboxamide;

- tert-butyl N-{[1-({2-[2-chloro-5-(5-fluorofuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl) cyclopropyl]methyl}carbamate;
- tert-butyl N-[2-({2-[2-chloro-5-(5-fluorofuran-2-amido) phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamoyl) ethyl]carbamate;
- N-(3-{6-[(3-aminopropyl)amino]-1H-imidazo[4,5-b]py-ridin-2-yl}-4-chlorophenyl)-5-fluorofuran-2-carboxamide:
- N-(4-chloro-3-{6-[(1-cyanocyclopropane)amido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide;
- N-[4-chloro-3-(6-{[1-(trifluoromethyl)cyclobutane] amido}-1H-imidazo[4,5-b]pyridin-2-yl)phenyl]-5-fluorofuran-2-carboxamide;
- N-(4-chloro-3-{6-[3-(morpholin-4-yl)propanamido]-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide;
- N-{3-[6-(3-aminopropanamido)-1H-imidazo[4,5-b]pyridin-2-yl]-4-chlorophenyl}-5-fluorofuran-2-carboxamide:
- N-(4-chloro-3-{6-formamido-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide;
- propan-2-yl N-(2-{2-chloro-5-[(pyrrolidin-1-yl)carbony- 25 lamino]phenyl}-[1,3]oxazolo[4,5-b]pyridin-6-yl)carbamate;
- propan-2-yl N-(2-{2-chloro-5-[(furan-2-yl)carbony-lamino]phenyl}-[1,3]oxazolo[4,5-b]pyridin-6-yl)carbamate;
- 5-fluoro-N-{3-[6-(propane-2-sulfonamido)-1H-imidazo [4,5-b]pyridin-2-yl]phenyl}furan-2-carboxamide;

126

propan-2-yl N-{2-[3-(5-fluorofuran-2-amido)phenyl]-1H-imidazo[4,5-b]pyridin-6-yl}carbamate; and

N-(3-{6-amino-1H-imidazo[4,5-b]pyridin-2-yl}phenyl)-5-fluorofuran-2-carboxamide.

- **13**. A pharmaceutical composition comprising a compound of any one of claims **1** to **12** as an active ingredient and at least one excipient.
- 14. A method for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of a disease caused by a parasite, comprising administering to a subject a therapeutically effective amount of a compound according to claim 1, wherein the disease is selected from Leishmaniasis, Human African Trypanosomiasis and Chagas disease, and wherein the administering is optionally in combination with a second agent.
- 15. The method of claim 14 for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Leishmaniasis, wherein the second agent selected from stibogluconate, meglumine antimoniate, Amphotericin, Miltefosine and paromomycin.
- 16. The method of claim 14 for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Human African Trypanosomiasis, wherein the administering is in combination with a second agent selected from pentamidine, suramin, melarsoprol, effornithine, and nifurtimox.
- 17. The method of claim 14 for treating, preventing, inhibiting, ameliorating, or eradicating the pathology and/or symptomology of Chagas disease, wherein the administering is in combination with a second agent selected from benznidazole, nifurtimox and Amphotericin.

* * * * *